339 research outputs found

    Transient Emission From Dissipative Fronts in Magnetized, Relativistic Outflows. II. Synchrotron Flares

    Full text link
    The time dependent synchrotron emission from relativistic jets, and the relation between the synchrotron and ERC emission is considered within the framework of the radiative front model. The timescale and profile of the optically thin emission are shown to be determined, in this model, by the shock formation radius, the thickness of expelled fluid slab and the variation of the front's parameters due to its transverse expansion. For a range of reasonable conditions, a variety of flare shapes can be produced, varying from roughly symmetric with exponential rises and decays, as often seen in blazars, to highly asymmetric with a fast rise and a much slower, power law decay, as seen in GRB afterglows. The onset, duration, and fluence of low-frequency (below the initial turnover frequency) and hard gamma-ray (above the initial gamma-spheric energy) outbursts are limited by opacity effects; the emission at these energies is quite generally delayed and, in the case of sufficiently short length outbursts, severely attenuated. The observational consequences are discussed. One distinctive prediction of this model is that in a single, powerful source, the upper cutoff of the gamma-ray spectrum should be correlated with the timescale of the outburst and with the amplitude of variations at long wavelengths (typically radio to millimeter).Comment: AAS LaTex, 14 pgs, accepted to A

    Intensive monitoring of the strongly variable BL Lac S5 0716+714

    Get PDF
    The BL Lac object S5 0716+714 was monitored during a multifrequency campaign in 1996. Preliminary analysis of the optical, ROSAT and RXTE data are presented. Strong variability on short time scales was observed. The data suggest an interpretation within a multi-component model.Comment: To appear in The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE, Rome, Italy, 21-24 October, 1997. Eds.: L. Scarsi, Bradt, P. Giommi and F. Fiore. PS-file avialable at http://www.lsw.uni-heidelberg.de/projects/extragalactic/bl_lac.htm

    Real-time Timbre Transfer and Sound Synthesis using DDSP

    Get PDF
    Neural audio synthesis is an actively researched topic, having yielded a wide range of techniques that leverages machine learning architectures. Google Magenta elaborated a novel approach called Differential Digital Signal Processing (DDSP) that incorporates deep neural networks with preconditioned digital signal processing techniques, reaching state-of-the-art results especially in timbre transfer applications. However, most of these techniques, including the DDSP, are generally not applicable in real-time constraints, making them ineligible in a musical workflow. In this paper, we present a real-time implementation of the DDSP library embedded in a virtual synthesizer as a plug-in that can be used in a Digital Audio Workstation. We focused on timbre transfer from learned representations of real instruments to arbitrary sound inputs as well as controlling these models by MIDI. Furthermore, we developed a GUI for intuitive high-level controls which can be used for post-processing and manipulating the parameters estimated by the neural network. We have conducted a user experience test with seven participants online. The results indicated that our users found the interface appealing, easy to understand, and worth exploring further. At the same time, we have identified issues in the timbre transfer quality, in some components we did not implement, and in installation and distribution of our plugin. The next iteration of our design will address these issues. Our real-time MATLAB and JUCE implementations are available at https://github.com/SMC704/juce-ddsp and https://github.com/SMC704/matlab-ddsp , respectively

    Gamma-loud quasars: a view with BeppoSAX

    Get PDF
    We present BeppoBeppoSAX observations of the γ\gamma -ray emitting quasars 0836+710, 1510-089 and 2230+114. All the objects have been detected in the PDS up to 100 keV and have extremely flat power-law spectra above 2 keV (αx\alpha _x=0.3--0.5). 0836+710 shows absorption higher than the galactic value and marginal evidence for the presence of the redshifted 6.4 keV Iron line. 1510-089 shows a spectral break around 1 keV, with the low energy spectrum steeper (αl\alpha_l=1.6) than the high energy power-law (αh\alpha_h=0.3). The data are discussed in the light of current Inverse Compton models for the high energy emission.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "X-Ray Astronomy '99", Bologna, Italy, September 199

    Rms-flux relation in the optical fast variability data of BL Lacertae object S5 0716+714

    Full text link
    The possibility that BL Lac S5 0716+714 exhibits a linear root mean square (rms)-flux relation in its IntraDay Variability (IDV) is analysed. The results may be used as an argument in the existing debate regarding the source of optical IDV in Active Galactic Nuclei. 63 time series in different optical bands were used. A linear rms-flux relation at a confidence level higher than 65% was recovered for less than 8% of the cases. We were able to check if the magnitude is log-normally distributed for eight timeseries and found, with a confidence > 95%, that this is not the case.Comment: Accepted by Astrophysics and Space Scienc

    Heme oxygenase-1 and carbon monoxide in pulmonary medicine

    Get PDF
    Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of anti-inflammatory effects, HO-1 limits tissue damage in response to proinflammatory stimuli and prevents allograft rejection after transplantation. The transcriptional upregulation of HO-1 responds to many agents, such as hypoxia, bacterial lipopolysaccharide, and reactive oxygen/nitrogen species. HO-1 and its constitutively expressed isozyme, heme oxygenase-2, catalyze the rate-limiting step in the conversion of heme to its metabolites, bilirubin IXα, ferrous iron, and carbon monoxide (CO). The mechanisms by which HO-1 provides protection most likely involve its enzymatic reaction products. Remarkably, administration of CO at low concentrations can substitute for HO-1 with respect to anti-inflammatory and anti-apoptotic effects, suggesting a role for CO as a key mediator of HO-1 function. Chronic, low-level, exogenous exposure to CO from cigarette smoking contributes to the importance of CO in pulmonary medicine. The implications of the HO-1/CO system in pulmonary diseases will be discussed in this review, with an emphasis on inflammatory states
    corecore