13 research outputs found

    Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for >10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival <14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFβ-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated

    Multivariate analysis of immunohistochemical evaluation of protein expression in pancreatic ductal adenocarcinoma reveals prognostic significance for persistent Smad4 expression only

    Get PDF
    Background Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year survival rate of <5% and an average survival of only 6 months. Although advances have been made in understanding the pathogenesis of PDAC in the last decades, overall survival has not changed. Various clinicopathological and immunohistological variables have been associated with survival time but the exact role that these variables play in relation to survival is not clear. Methods and results To examine how the variables affected survival independently, multivariate analysis was conducted in a study group of 78 pancreatic ductal adenocarcinomas. The analysis included clinicopathological parameters and protein expression examined by immunohistochemistry of p53, Smad4, Axl, ALDH, MSH2, MSH6, MLH1 and PMS2. Lymph node ratio <0.2 (p=0.004), tumor free resection margins (p=0.044) and Smad4 expression (p=0.004) were the only independent prognostic variables in the multivariate analysis. Expression of the other proteins examined was not significantly related to survival. Conclusions Discrepancies with other studies in this regard are likely due to differences in quantification of immunohistochemical staining and the lack of multivariate analysis. It underscores the importance to standardize the methods used for the application of immunohistochemistry in prognostic studie

    Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis: of mice and men

    No full text
    Context.-Pancreatic cancer has a poor prognosis with a 5-year survival of less than 5%. Early detection is at present the only way to improve this outlook. This review focuses on the recent advances in our understanding of pancreatic carcinogenesis, the scientific evidence for a multistaged tumor progression, and the role genetically engineered mouse models can play in recapitulating the natural course and biology of human disease. Objectives.-To illustrate the stepwise tumor progression of pancreatic cancer and genetic alterations within the different stages of progression and to review the findings made with genetically engineered mouse models concerning pancreatic carcinogenesis. Data Sources.-A review of recent literature on pancreatic tumorigenesis and genetically engineered mouse models. Conclusions.-Pancreatic cancer develops through stepwise tumor progression in which preinvasive stages, called pancreatic intraepithelial neoplasia, precede invasive pancreatic cancer. Genetic alterations in oncogenes and tumor suppressor genes underlying pancreatic cancer are also found in pancreatic intraepithelial neoplasia. These mutations accumulate during progression through the consecutive stages of pancreatic intraepithelial neoplasia lesions. Also in genetically engineered mouse models of pancreatic ductal adenocarcinoma, tumorigenesis occurs through stepwise progression via consecutive mouse pancreatic intraepithelial neoplasia, and these models provide important tools for clinical applications. Nevertheless differences between mice and men still remai

    Analysis of LKB1 mutations and other molecular alterations in pancreatic acinar cell carcinoma

    No full text
    Acinar cell carcinoma is a rare non-ductal neoplasm of the pancreas with poorly defined molecular genetic features. Recently, biallelic inactivation of LKB1 was described in an acinar cell carcinoma of a Peutz-Jeghers patient carrying a heterozygous germline LKB1 mutation, and inhibition of mTOR signaling resulted in partial remission of the tumor. To explore the potential of mTOR inhibitors in sporadic acinar cell carcinoma, the LKB1 gene was investigated in five sporadic acinar cell carcinomas by sequence analysis, methylation analysis and mRNA expression. In addition, microsatellite instability and methylation of a number of tumor suppressor genes were investigated and KRAS, TP53, CDKN1A, SMAD4 and CTNNB1 were studied by mutation analysis and immunohistochemistry. No mutations, deletions or promoter hypermethylation of LKB1 were found in any of the sporadic acinar cell carcinomas, and mRNA expression of LKB1 was not altered. Amplifications at chromosome 20q and 19p were found in 100 and 80% of the cases, respectively. In addition, hypermethylation of one or more tumor suppressor genes was found in 80% of cases. One case harbored a TP53 mutation, and expression of SMAD4 and CTNNB1 was altered in one case each. No KRAS mutations or microsatellite instability were found. To conclude, no evidence for a role for LKB1 in tumorigenesis of sporadic pancreatic acinar cell carcinoma was found. However, copy number variations and hypermethylation were found in a majority of cases. Molecular pathways involved in acinar cell carcinoma-tumorigenesis differ from those involved in ductal pancreatic neoplasms. Further studies are needed to increase our understanding of molecular pathogenesis of acinar cell carcinoma, which may eventually result in development of new therapeutic target

    Pancreatic ductal adenocarcinoma in hereditary diffuse gastric cancer. A case report

    Get PDF
    Hereditary diffuse gastric cancer is an autosomal dominant cancer syndrome characterized by highly penetrant diffuse gastric cancer. It is caused by germ line mutations in CDHI, encoding the cell-cell adhesion protein E-cadherin. Pancreatic ductal adenocarcinoma is one of the most dismal malignancies in humans. Although absent E-cadherin expression in pancreatic ductal adenocarcinoma is related to a higher tumor grade and a worse prognosis, there have been no reports of pancreatic ductal adenocarcinoma associated with hereditary diffuse gastric cancer. Here, we describe a patient with hereditary diffuse gastric cancer who was subsequently diagnosed with pancreatic ductal adenocarcinoma. To investigate if the previously identified CDHI germ line mutation initiated pancreatic ductal adenocarcinoma development, we performed mutational and proteomic analyses. We conclude that the pancreatic ductal adenocarcinoma did not occur in the context of the germ line CDHI mutation but rather appeared as a sporadic event. Immunohistochemistry ultimately proved to be the most valuable tool of investigation as persistent CDHI staining in the pancreatic ductal adenocarcinoma unequivocally revealed E-cadherin expression. (C) 2012 Elsevier Inc. All rights reserve
    corecore