38 research outputs found

    Stability of queueing-inventory systems with different priorities

    Full text link
    We study a production-inventory system with two customer classes with different priorities which are admitted to the system following a flexible admission control scheme. The inventory management is according to a base stock policy and arriving demand which finds the inventory depleted is lost (lost sales). We analyse the global balance equations of the associated Markov process and derive structural properties of the steady state distribution which provide insights into the equilibrium behaviour of the system. We derive a sufficient condition for ergodicity using the Foster-Lyapunov stability criterion. For a special case we show that the condition is necessary as well

    Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries

    Get PDF
    Measurements in soils have been traditionally used to demonstrate that soil architecture is one of the key drivers of soil processes. Major advances in the use of X-ray Computed Tomography (CT) afford significant insight into the pore geometry of soils, but until recently no experimental techniques were available to reproduce this complexity in microcosms. This article describes a 3D additive manufacturing technology that can print physical structures with pore geometries reflecting those of soils. The process enables printing of replicated structures, and the printing materials are suitable to study fungal growth. This technology is argued to open up a wealth of opportunities for soil biological studies

    Queues in a random environment

    Full text link
    Exponential single server queues with state dependent arrival and service rates are considered which evolve under influences of external environments. The transitions of the queues are influenced by the environment's state and the movements of the environment depend on the status of the queues (bi-directional interaction). The structure of the environment is constructed in a way to encompass various models from the recent Operation Research literature, where a queue is coupled e.g. with an inventory or with reliability issues. With a Markovian joint queueing-environment process we prove separability for a large class of such interactive systems, i.e. the steady state distribution is of product form and explicitly given: The queue and the environment processes decouple asymptotically and in steady state. For non-separable systems we develop ergodicity criteria via Lyapunov functions. By examples we show principles for bounding throughputs of non-separable systems by throughputs of two separable systems as upper and lower bound

    Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation

    Get PDF
    Soil respiration represents the second largest CO2 flux from terrestrial ecosystems to the atmosphere, and a small rise could significantly contribute to further increase in atmospheric CO2. Unfortunately, the extent of this effect cannot be quantified reliably, and the outcomes of experiments designed to study soil respiration remain notoriously unpredictable. In this context, the mathematical simulations described in this article suggest that assumptions of linearity and presumed irrelevance of micro-scale heterogeneity, commonly made in quantitative models of microbial growth in subsurface environments and used in carbon stock models, do not appear warranted. Results indicate that microbial growth is non-linear and, at given average nutrient concentrations, strongly dependent on the microscale distribution of both nutrients and microbes. These observations have far-reaching consequences, in terms of both experiments and theory. They indicate that traditional, macroscopic soil measurements are inadequate to predict microbial responses, in particular to rising temperature conditions, and that an explicit account is required of microscale heterogeneity. Furthermore, models should evolve beyond traditional, but overly simplistic, assumptions of linearity of microbial responses to bulk nutrient concentrations. The development of a new generation of models along these lines, and in particular incorporating upscaled information about microscale processes, will undoubtedly be challenging, but appears to be key to understanding the extent to which soil carbon mineralization could further accelerate climate change

    Forest management and flood alleviation: understanding water storage capacity of organic soil-subsoil below ancient forest, planted forest, and grassland

    Get PDF
    A number of serious flood events in recent years have focused attention on flood prevention and mitigation and modelling work suggests that climate change will lead to an increase in the intensity and frequency of flood events in many areas. To understand how soil hydraulic characteristics develops in relation to facilitating the infiltration and storage of storm rainfall, a hypothetical pedogensis sequence was first developed and then tested by investigating a grassland site and four Scots pine (Pinus sylvestris) forests of different ages in the Scottish Highlands. These sites are: grassland, six and 45 year-old Scots pine plantations, remnant 300 year old individual Scots pines and a 4000 year old Caledonian Forest. The soil characteristics measured were: field saturated hydraulic conductivity (Kfs) using a constant head well permeameter, root numbers and proportion were estimated from soil pits and soil cores were taken for three different soil depths (0.06 – 0.10, 0.16 – 0.20 and 0.26 to 0.40m) for laboratory measurements to estimate organic matter, soil water release curves, macro-pores, and X – ray tomography measured pore connectivity and soil pore structure. It was observed that cutting down of the plantation increased organic matter because of the increase of dead biomass and decreased pore connectivity, which resulted in reduced hydraulic conductivity during the early years of re-afforestation. Where older trees were left, after cutting and removing younger trees; the range of OM, hydraulic conductivity, pore connectivity, and macropores remained similar to and older Scots pine plantation (45 years old). The undisturbed Ancient Caledonian remnant forest (approximately 4000 years old) was observed to have remarkably heterogeneous soil characteristics, providing extreme values of Kfs (12 to 4992 mm hr-1), OM, and macropores. Such ranges of soil characteristics were considered to be the optimum to reduce local flooding, because the soil matrix could transport high intensity storm rainfall and re-direct storm rainfall to deeper layers and the presence of micropores and larger quantity of OM provides a greater area to store. This combination of soil characteristics would slow down the flow of rainfall to ground water reservoirs and rivers and reduce flood peaks

    Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σB regulon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The opportunistic food-borne gram-positive pathogen <it>Listeria monocytogenes </it>can exist as a free-living microorganism in the environment and grow in the cytoplasm of vertebrate and invertebrate cells following infection. The general stress response, controlled by the alternative sigma factor, σ<sup>B</sup>, has an important role for bacterial survival both in the environment and during infection. We used quantitative real-time PCR analysis and immuno-blot analysis to examine σ<sup>B </sup>expression during growth of <it>L. monocytogenes </it>EGD-e. Whole genome-based transcriptional profiling was used to identify σ<sup>B</sup>-dependent genes at different growth phases.</p> <p>Results</p> <p>We detected 105 σ<sup>B</sup>-positively regulated genes and 111 genes which appeared to be under negative control of σ<sup>B </sup>and validated 36 σ<sup>B</sup>-positively regulated genes <it>in vivo </it>using a reporter gene fusion system.</p> <p>Conclusion</p> <p>Genes comprising the σ<sup>B </sup>regulon encode solute transporters, novel cell-wall proteins, universal stress proteins, transcriptional regulators and include those involved in osmoregulation, carbon metabolism, ribosome- and envelope-function, as well as virulence and niche-specific survival genes such as those involved in bile resistance and exclusion. Ten of the σ<sup>B</sup>-positively regulated genes of <it>L. monocytogenes </it>are absent in <it>L. innocua</it>. A total of 75 σ<sup>B</sup>-positively regulated listerial genes had homologs in <it>B. subtilis</it>, but only 33 have been previously described as being σ<sup>B</sup>-regulated in <it>B. subtilis </it>even though both species share a highly conserved σ<sup>B</sup>-dependent consensus sequence. A low overlap of genes may reflects adaptation of these bacteria to their respective environmental conditions.</p

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    corecore