2,541 research outputs found

    Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079

    Get PDF
    We present spectroscopic data of ionized gas in the disk--halo regions of three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength range from [\ion{O}{2}] λ\lambda3727\AA to [\ion{S}{2}] λ\lambda6716.4\AA. The inclusion of the [\ion{O}{2}] emission provides new constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We used three different methods to derive electron temperatures, abundances and ionization fractions along the slit. The increase in the [\ion{O}{2}]/Hα\alpha line ratio towards the halo in all three galaxies requires an increase either in electron temperature or in oxygen abundance. Keeping the oxygen abundance constant yields the most reasonable results for temperature, abundances, and ionization fractions. Since a constant oxygen abundance seems to require an increase in temperature towards the halo, we conclude that gradients in the electron temperature play a significant role in the observed variations in the optical line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure

    Exploring the phase diagram of the two-impurity Kondo problem

    Full text link
    A system of two exchange-coupled Kondo impurities in a magnetic field gives rise to a rich phase space hosting a multitude of correlated phenomena. Magnetic atoms on surfaces probed through scanning tunnelling microscopy provide an excellent platform to investigate coupled impurities, but typical high Kondo temperatures prevent field-dependent studies from being performed, rendering large parts of the phase space inaccessible. We present an integral study of pairs of Co atoms on insulating Cu2N/Cu(100), which each have a Kondo temperature of only 2.6 K. In order to cover the different regions of the phase space, the pairs are designed to have interaction strengths similar to the Kondo temperature. By applying a sufficiently strong magnetic field, we are able to access a new phase in which the two coupled impurities are simultaneously screened. Comparison of differential conductance spectra taken on the atoms to simulated curves, calculated using a third order transport model, allows us to independently determine the degree of Kondo screening in each phase.Comment: paper: 14 pages, 4 figures; supplementary: 3 pages, 1 figure, 1 tabl

    Boundedness properties of fermionic operators

    Full text link
    The fermionic second quantization operator dΓ(B)d\Gamma(B) is shown to be bounded by a power Ns/2N^{s/2} of the number operator NN given that the operator BB belongs to the rr-th von Neumann-Schatten class, s=2(r1)/rs=2(r-1)/r. Conversely, number operator estimates for dΓ(B)d\Gamma(B) imply von Neumann-Schatten conditions on BB. Quadratic creation and annihilation operators are treated as well.Comment: 15 page

    Emission Line Ratios and Variations in Temperature and Ionization State in the Diffuse Ionized Gas of Five Edge-on Galaxies

    Full text link
    We present spectroscopic observations of ionized gas in the disk-halo regions of five edge-on galaxies, covering a wavelength range from [OII] 3727A to [SII] 6716.4A. The inclusion of the [OII] emission provides additional constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We have derived electron temperatures, ionization fractions and abundances along the slit. Our data include both slit positions parallel and perpendicular to the galactic disks. This allowed us to examine variations in the line intensity ratios with height above the midplane as well as distance from the galactic centers. The observed increase in the [OII]/Halpha line ratio towards the halo seems to require an increase in electron temperature caused by a non-ionizing heating mechanism. We conclude that gradients in the electron temperature can play a significant role in the observed variations in the optical emission line ratios from extraplanar DIG.Comment: accepted for publication in ApJ, 43 pages including 26 figure

    Controlled complete suppression of single-atom inelastic spin and orbital cotunnelling

    Get PDF
    The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom's spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom's environment, using scanning tunnelling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chain on a Cu2_2N substrate, indicates a structural transition affecting the dz_z2^2 orbital, effectively cutting off the STM tip from the spin-flip cotunnelling path.Comment: 4 figures plus 4 supplementary figure

    Evidence for an Additional Heat Source in the Warm Ionized Medium of Galaxies

    Get PDF
    Spatial variations of the [S II]/H-Alpha and [N II]/H-Alpha line intensity ratios observed in the gaseous halo of the Milky Way and other galaxies are inconsistent with pure photoionization models. They appear to require a supplemental heating mechanism that increases the electron temperature at low densities n_e. This would imply that in addition to photoionization, which has a heating rate per unit volume proportional to n_e^2, there is another source of heat with a rate per unit volume proportional to a lower power of n_e. One possible mechanism is the dissipation of interstellar plasma turbulence, which according to Minter & Spangler (1997) heats the ionized interstellar medium in the Milky Way at a rate ~ 1x10^-25 n_e ergs cm^-3 s^-1. If such a source were present, it would dominate over photoionization heating in regions where n_e < 0.1 cm^-3, producing the observed increases in the [S II]/H-Alpha and [N II]/H-Alpha intensity ratios at large distances from the galactic midplane, as well as accounting for the constancy of [S II]/[N II], which is not explained by pure photoionization. Other supplemental heating sources, such as magnetic reconnection, cosmic rays, or photoelectric emission from small grains, could also account for these observations, provided they supply to the warm ionized medium ~ 10^-5 ergs s^-1 per cm^2 of Galactic disk.Comment: 10 pages, 1 figur
    corecore