244 research outputs found

    Increasing Performances of TCP Data Transfers Through Multiple Parallel Connections

    Get PDF
    Although Transmission Control Protocol (TCP) is a widely deployed and successful protocol, it shows some limitations in present-day environments. In particular, it is unable to exploit multiple (physical or logical) paths between two hosts. This paper presents PATTHEL, a session-layer solution designed for parallelizing stream data transfers. Parallelization is achieved by striping the data flow among multiple TCP channels. This solution does not require invasive changes to the networking stack and can be implemented entirely in user space. Moreover, it is flexible enough to suit several scenarios - e.g. it can be used to split a data transfer among multiple relays within a peer-to-peer overlay networ

    Providing End-to-End Connectivity to SIP User Agents Behind NATs

    Get PDF
    The widespread diffusion of private networks in SOHO scenarios is fostering an increased deployment of Network Address Translators (NATs). The presence of NATs seriously limits end-to-end connectivity and prevents protocols like the Session Initiation Protocol (SIP) from working properly. This document shows how the Address List Extension (ALEX), which was originally developed to provide dual-stack and multi-homing support to SIP, can be used, with minor modifications, to ensure end-to-end connectivity for both media and signaling flows, without relying on intermediate relay nodes whenever it is possibl

    An Experimental Evaluation of the Computational Cost of a DPI Traffic Classifier

    Get PDF
    A common belief in the scientific community is that traffic classifiers based on deep packet inspection (DPI) are far more expensive in terms of computational complexity compared to statistical classifiers. In this paper we counter this notion by defining accurate models for a deep packet inspection classifier and a statistical one based on support vector machines, and by evaluating their actual processing costs through experimental analysis. The results suggest that, contrary to the common belief, a DPI classifier and an SVM-based one can have comparable computational costs. Although much work is left to prove that our results apply in more general cases, this preliminary analysis is a first indication of how DPI classifiers might not be as computationally complex, compared to other approaches, as we previously though

    Comparative Evaluation of Packet Classification Algorithms for Implementation on Resource Constrained Systems

    Get PDF
    This paper provides a comparative evaluation of a number of known classification algorithms that have been considered for both software and hardware implementation. Differently from other sources, the comparison has been carried out on implementations based on the same principles and design choices. Performance measurements are obtained by feeding the implemented classifiers with various traffic traces in the same test scenario. The comparison also takes into account implementation feasibility of the considered algorithms in resource constrained systems (e.g. embedded processors on special purpose network platforms). In particular, the comparison focuses on achieving a good compromise between performance, memory usage, flexibility and code portability to different target platforms

    Network Virtual Machine (NetVM): A New Architecture for Efficient and Portable Packet Processing Applications

    Get PDF
    A challenge facing network device designers, besides increasing the speed of network gear, is improving its programmability in order to simplify the implementation of new applications (see for example, active networks, content networking, etc). This paper presents our work on designing and implementing a virtual network processor, called NetVM, which has an instruction set optimized for packet processing applications, i.e., for handling network traffic. Similarly to a Java Virtual Machine that virtualizes a CPU, a NetVM virtualizes a network processor. The NetVM is expected to provide a compatibility layer for networking tasks (e.g., packet filtering, packet counting, string matching) performed by various packet processing applications (firewalls, network monitors, intrusion detectors) so that they can be executed on any network device, ranging from expensive routers to small appliances (e.g. smart phones). Moreover, the NetVM will provide efficient mapping of the elementary functionalities used to realize the above mentioned networking tasks upon specific hardware functional units (e.g., ASICs, FPGAs, and network processing elements) included in special purpose hardware systems possibly deployed to implement network devices

    Comparing P2PTV Traffic Classifiers

    Get PDF
    Peer-to-Peer IP Television (P2PTV) applications represent one of the fastest growing application classes on the Internet, both in terms of their popularity and in terms of the amount of traffic they generate. While network operators require monitoring tools that can effectively analyze the traffic produced by these systems, few techniques have been tested on these mostly closed-source, proprietary applications. In this paper we examine the properties of three traffic classifiers applied to the problem of identifying P2PTV traffic. We report on extensive experiments conducted on traffic traces with reliable ground truth information, highlighting the benefits and shortcomings of each approach. The results show that not only their performance in terms of accuracy can vary significantly, but also that their usability features suggest different effective aspects that can be integrate

    Increasing Performances of TCP Data Transfers Through Multiple Parallel Connections

    Get PDF
    Although Transmission Control Protocol (TCP) is a widely deployed and successful protocol, it shows some limitations in present-day environments. In particular, it is unable to exploit multiple (physical or logical) paths between two hosts. This paper presents PATTHEL, a session-layer solution designed for parallelizing stream data transfers. Parallelization is achieved by striping the data flow among multiple TCP channels. This solution does not require invasive changes to the networking stack and can be implemented entirely in user space. Moreover, it is flexible enough to suit several scenarios - e.g. it can be used to split a data transfer among multiple relays within a peer-to-peer overlay network

    Optimizing packet capture on symmetric multiprocessing machines

    Get PDF
    Traffic monitoring and analysis based on general purpose systems with high speed interfaces, such as Gigabit Ethernet and 10 Gigabit Ethernet, requires carefully designed software in order to achieve the needed performance. One approach to attain such a performance relies on deploying multiple processors. This work analyses some general issues in multiprocessor systems that are particularly critical in the context of packet capture and network monitoring applications. More important, a new algorithm is proposed to coordinate multiple producers concurrently accessing a shared buffer, which is instrumental in packet capture on symmetrical multiprocessor machines
    corecore