111 research outputs found

    Preliminary Results of the Use of Sowing Time and Variety Choice as Techniques of Adaptability of Durum Wheat (Triticum durum Desf.) to Temperature Increases

    Get PDF
    In the 21st century, global climate change is a key concern for countries all over the world as, in the future, crops will face several extreme events, including an increase of 2–4◦C in the mean temperature with a possible consequent reduction in yield. Wheat (Triticum durum Desf) is one of the most important foods as it provides 20% of the protein for the world population. Since temperature is one of the most limiting factors of crop development, the aim of this trial was to verify the agronomic response of durum wheat to a temperature increase of about 1.5–2.0◦C through the use of short-time adjustment techniques, such as sowing time and variety choice. The experiment foresaw the comparison between two different temperature conditions (ordinary, OT—in the open field, and high, HT—under a polyethylene tunnel), two sowing times (ordinary—OS, and delayed—DS), and three varieties (Ofanto, modern variety; Cappelli, traditional variety; and a mix of the two). HT conditions caused a decline in the wheat yield (−52.5%), but without differences between the two sowing times. The grain quality resulted positively when affected by late sowing times with an increase in 1000 seeds weight and protein percentages and a decrease in shrunken grains. Therefore, it seems that in areas characterized by high temperatures, delayed sowing can improve grain quality without reducing yield quantity compared to ordinary sowing times

    Yield performance and physiological response of a maize early hybrid grown in tunnel and open air under different water regimes

    Get PDF
    Climate change is one of the most important and studied phenomena of our age and it can have a deep impact on agriculture. Mediterranean countries are and will continue to be strongly affected by changing environmental factors, including lack of precipitation and prolonged heatwaves. The current study aimed to assess the adaptability of an early maize hybrid grown in two temperature conditions and subjected to different irrigation water regimes. The experimen-tal design was a randomized complete-block design with two different temperature conditions: (i) ordinary temperature in open field (OF) and (ii) high temperature (about 3◦ C higher than the current condition) under a poly-ethylene tunnel (PE). In both environments, five irrigation level treatments were applied: 100% (DI100), 75% (DI75), 50% (DI50), 25% (DI25), and 0% restoration of water lost by evapotranspiration (DI0). The responses of maize plants were assessed in terms of yield, nitrogen content determination, nitrogen use efficiency, leaf gas exchanges, and leaf water potential measurements. In both conditions, yield and its components linearly decreased as the irrigation water amount reduced, and even the DI0 plants did not produce. Notably, the PE-DI100 treatment had a significantly higher yield than the corresponding treatment in the open air (9.9 vs. 8.5 t ha−1 ), due mainly to the increased number of ears per square meter (13 vs. 11 m2, respectively). Though, as far as it concerns physiological parameters, a significant effect of environmental conditions was found, with values significantly lower under the protected environment, compared to the plants in the open field. Considering our results, it can be assumed that correct management of amount and time intervals of irrigation could adapt the maize to future climate change

    Effects of irrigation on n2o emissions in a maize crop grown on different soil types in two contrasting seasons

    Get PDF
    Crop management and soil properties affect greenhouse gas (GHG) emissions from cropping systems. Irrigation is one of the agronomical management practices that deeply affects soil nitrous oxide (N2O) emissions. Careful management of irrigation, also concerning to soil type, might mitigate the emissions of this powerful GHG from agricultural soils. In the Mediterranean area, despite the relevance of the agricultural sector to the overall economy and sustainable development, the topic of N2O emissions does not have the same importance as N2O fluxes in temperate agricultural areas. Only some research has discussed N2O emissions from Mediterranean cropping systems. Therefore, in this study, N2O emissions from different soil types (sandy‐loam and clay soils) were analyzed in relation to the irrigation of a maize crop grown in two contrasting seasons (2009–2010). The irrigation was done using a center pivot irrigation system about twice a week. The N2O emissions were monitored throughout the two‐years of maize crop growth. The emissions were measured with the accumulation technique using eight static chambers (four chambers per site). Nitrogen fertilizer was applied in the form of ammonium sulphate and urea with 3,4 dimethylpyrazole phosphate (DMPP) nitrification inhibitors. In 2009, the N2O emissions and crop biomass measured in both soil types were lower than those measured in 2010. This situation was a lower amount of water and nitrogen (N) available to the crop. In 2010, the N2O fluxes were higher in the clay site than those in the sandy‐loam site after the first fertilization, whereas an opposite trend was found after the second fertilization. The soil temperature, N content, and soil humidity were the main drivers for N2O emission during 2009, whereas during 2010, only the N content and soil humidity affected the nitrous oxide emissions. The research has demonstrated that crop water management deeply affects soil N2O emissions, acting differently for denitrification and nitrification. The soil properties affect N2O emission by influencing the microclimate conditions in the root zone, conditioning the N2O production

    IL MUSEO DELL’OSSERVATORIO VESUVIANO E IL SUO PUBBLICO. ANNI 2005 - 2009

    Get PDF
    The Vesuvius Observatory, first volcanological observatory in the world, was built in 1841 by King Ferdinand II of Bourbon. It is now the Naples section of the National Institute of Geophysics and Volcanology (INGV). Since its foundation it has been not only a reference point for national and international scientific community, but also a place of information and dissemination for the population in the field of research and monitoring of volcanic phenomena. Always museum activities, guided tours through the collections of scientific instruments, rocks and minerals have been carried out in it. Since 2000 scientific and historical collections located into the old building of Vesuvius Observatory have been organized in the exhibition "Vesuvius: 2000 years of observations", which describes the eruptive history of Somma-Vesuvius, with the aim of providing updated information about monitoring of active volcanoes, on eruptive phenomena and related hazards, educating the population of areas exposed to volcanic hazards. The museum path is targeted to public of any geographical origin and cultural background and could be considered a journey through the history of volcanology from the beginning until the present day. In the exhibition, Vesuvius is the backdrop to an exhibition in which purely scientific elements coexist with historical, archaeological, literary, artistic aspects, thanks to the support of images, documents such as the geological map of Henry James Johnston-Lavis and the book "Campi Flegrei" by William Hamilton, specimens of rocks and minerals and old scientific instruments, used in the past for monitoring volcanic activity, including the first electromagnetic seismograph made by Luigi Palmieri. The first part of this work is focussed on the description of the existing exhibition. Since 2000 the statistical survey of the public of the museum has been carried out through an evaluation procedure form. The findings relate to the monthly and annual attendance, geographical origin and kind of visitors. In the second part of this work results for the five years from 2005 to 2009 are described. The characterization of different audiences in the museum means that, from time to time, the path of the visit could be arranged according to the expectations and needs of visitors; in this context, the museum educator plays the delicate role of mediator, with accurate language, between the contents of the museum and those who interact with it

    Assessing Yield and Quality of Melon (Cucumis melo L.) Improved by Biodegradable Mulching Film

    Get PDF
    : Low-density polyethylene (LDPE) plastic mulching films have an important function, but at the end of their lifetime pose an economic and environmental problem in terms of their removal and disposal. Biodegradable mulching films represent an alternative to LDPE with the potential to avoid these environmental issues. In this preliminary study, we employed a biodegradable film based on Mater-Bi® (MB) in comparison with low-density polyethylene to assess their effect on the yield and particular quality traits (organoleptic and nutraceutical composition of the fruits) of muskmelon (cv Pregiato) grown on soils with different textures (clay-loam-CL and sandy loam-SL) in two private farms in South Italy. Soil temperature under the mulch was also measured. During the monitored periods, mean soil temperature under LDPE was higher (about 1.3 °C) than that under the biodegradable film and was higher in SL soil than in CL soil, at 25.5° and 24.2 °C, respectively. However, the biodegradable film was able to limit the daily temperature fluctuation, which was 1.7 °C in both soils compared with 2.3 °C recorded for LDPE. Fruit yields were higher with MB film than LDPE (+9.5%), irrespective of soil texture. MaterBi® also elicited increases in total soluble solids, polyphenols, flavonoids, and antioxidant activity compared with LDPE films: 13.3%, 22.4%, 27.2%, and 24.6%, respectively. Color parameters of flesh, namely brightness, chroma, and hue angle were better in fruits grown on LDPE. Our findings suggest that Mater-Bi® based biodegradable mulching film is a potentially valid alternative to traditional LDPE, particularly for obtaining the agronomical benefits outlined above and for promoting environmental sustainability due to its favourable biodegradable properties

    The effect of novel biodegradable films on agronomic performance of zucchini squash grown under open-field and greenhouse conditions

    Get PDF
    The soil mulching is an important agricultural practice for increasing crop productivity and earliness. Mulching can be made with natural or synthetic materials. The common films being used these days are usually made of low density polyethylene (LDPE), but its disposal can represent a serious environmental and economic problem. The biodegradable mulching can overcome these problems. Two experiments were carried out comparing the effects of biodegradable and LDPE mulching films on yield and quality of zucchini (Cucurbita pepo L.) grown in two environments (open-field vs. greenhouse). In both the environments a randomized complete block design was adopted. The treatments composed of no-mulched crop (control), soil covered by 15 microns black biodegradable film (MB15) and soil covered by 50 microns black LDPE film. The results showed that MB15 was able to maintain discrete technical proprieties until the end of cycle, especially in greenhouse, assuring a sufficient heating of soil, similar to LDPE. The soil heating promoted crop development. Furthermore, earliness was increased (84 in greenhouse vs. 99 days in open air) in greenhouse. The early production of zucchini grown on MB15 was similar to the one in LDPE production in greenhouse. The total marketable yield of plants grown on both films was not different but it was lower in open air. The biodegradable film significantly improved fruits quality, with higher values of firmness and total soluble solid than fruits grown on LDPE

    Infrared Multispectral Monitoring of Cereal Crops

    Get PDF
    Plants are subjected to a wide range of stresses which reduces the productivity of agricultural crops. In the case of cereal cultivations, climate change impacts on their production mainly through abiotic and biotic stress due for example to heat and water stress but also to pathogens such as bacteria, fungi, nematodes and others. The area under cereal cultivation is increasing worldwide, but, due to these problems, the current rates of yield growth and overall production are not enough to satisfy future demand. For this motivation, there is the needs to monitor and to control the cultivations, also developing new technological solutions useful to better optimize the management strategies, increasing both the quality of products and the quantity of the annual cereal harvest. Infrared imaging is a well-known non-invasive and non-contact technique that represents an outstanding approach of analysis applied in many fields: engineering, medicine, veterinary, cultural heritage and others. In recent years it has been gaining great interest in agriculture as it is well suited to the emerging needs of the precision agriculture management strategies. In this work, we performed an in-field multispectral infrared monitoring of different cereal crops (durum wheat and common wheat) through the use of both LWIR and MWIR cameras. The monitoring carried out made it possible to identify, among the crops analyzed, those subject to higher stress levels and their response to the different spectral ranges used. The results obtained open to the possibility of identifying new figures of merit useful for an effective monitoring of cereal crops and measurable through remote instrumentation

    Fertilizer type influences tomato yield and soil N2O emissions

    Get PDF
    Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N2O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N2O fluxes compared to NH4NO3, although the lowest soil N2O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N2O emission

    Plant-based protein hydrolysate improves salinity tolerance in hemp: Agronomical and physiological aspects

    Get PDF
    Hemp (Cannabis sativa L.) is a multipurpose plant attracting increasing interest as a source for the production of natural fibers, paper, bio-building material and food. In this research we studied the agronomical performance of Cannabis sativa cv. Eletta Campana irrigated with saline water. Under those conditions, we tested the effect of protein hydrolysate (PH) biostimulant application in overcoming and/or balancing deleterious salinity effects. The results of the diverse treatments were also investigated at the physiological level, focusing on photosynthesis by means of a chlorophyll a fluorescence technique, which give an insight into the plant primary photochemical reactions. Four salinity levels of the irrigation solution (fresh water-EC0, and NaCl solutions at EC 2.0, 4.0 or 6.0 dS m−1, EC2, EC4 and EC6, respectively) were combined with 2 biostimulant treatments (untreated (control) or treated with a commercial legume-derived protein hydrolysate (LDPH)). The increasing salinity affected plant photochemistry resulting in lower plant growth and seed production, while the LDPH biostimulant showed a protective effect, which improved crop performance both in control and in salinity conditions. The LDPH treatment improved seeds yield (+38.6% on average of all treated plants respect to untreated plants), as well as residual biomass, relevant in fiber production

    Use of giant reed (Arundo donax L.) to control soil erosion and improve soil quality in a marginal degraded area

    Get PDF
    Soil erosion is one of the biggest environmental problems throughout European Union causing considerable soil losses. Vegetation cover provides an important soil protection against runoff and soil erosion. To this aim, unlike annual crops, perennial plants have the advantage of covering soil for a longer time and reducing soil erodibility thanks to SOM increase due to litter effect and to reduction of soil disturbance (no-tillage). Two experiments were carried out in marginal hilly areas (10% slope) of Southern Italy: i) long-term experiment in which it was evaluated the effect of two fertilization doses (N: 100 and 50 kg N ha−1 from urea) on Arundo donax L. biomass production as well as its effect on soil erosion; ii) three-year experiment to evaluate the soil cover capacity of the giant reed by analysing the plant leaf area index (LAI). Results of the two experiments showed a good soil protection of Arundo donax L. that reduced soil losses by 78% as compared to fallow and showed soil erosion reduction not different from permanent meadow thanks to the soil covering during the period with the highest rain erosivity and to the reduction in soil erodibility. The protective effect of Arundo donax L. from rain erosivity was also confirmed by LAI analysis that showed a good soil covering of giant reed in the above mentioned period, even during the initial yield increasing phase following crop transplant. According to biomass yield, from the fifteen year of cultivation in a low fertile inland hilly area of Southern Italy, giant reed was characterized by a yield-decreasing phase that resulted postponed as compared to more fertile environments thus ensuring a longstanding soil protection from soil erosion. In addition, the higher nitrogen fertilization dose (100 kg ha−1 of N) allowed interesting biomass yield as compared to the lower dose (50 kg N ha−1) and kept constant SOC along the year of experimentation due to an improved contribution of leaf fall, root exudates and root turnover to soil. o
    corecore