876 research outputs found

    Staudenmischpflanzung mit heimischen Arten

    Get PDF
    Diese Bachelorarbeit liefert erste Erkenntnisse zum Themenbereich heimische Staudenmischpflanzung zur Förderung von Schwebfliegen auf Flächen, welche den gärtnerischen Lebensbereichen 2-3 zugeordnet werden können. Um die formulierten Forschungsfragen zu beantworten, wird eine Literaturrecherche durchgeführt, welche aus deutsch- und englischsprachiger Literatur besteht. Die Recherche umfasst einerseits Literatur zur Staudenmischpflanzung und dem Lebensbereich Freifläche 2-3 und andererseits zu den Lebensbereichen der Schwebfliegen, deren Lebenszyklus sowie ihre Vorlieben zu Blütenform und Farben. Auf spezifische Gattungen und Arten der Schwebfliegen wird im Rahmen dieser Arbeit nicht detailliert eingegangen. Die Individualität in ihrer Lebensweise, ihrem Körperbau sowie die grosse Artenmannigfaltigkeit der Schwebfliegen erfordert eine Zusammenfassung in Unterfamilien. Die erarbeiteten Pflanzenlisten werden durch ein erstelltes Filtersystem kondensiert und zu einer Staudenmischpflanzung zusammengesetzt. Anhand der Erkenntnisse aus der Literatur wird eine Staudenmischpflanzung sowie deren Planung, Bodenvorbereitung, Pflanzplan, Pflege und eine Kostenschätzung erstellt. Die Ergebnisse der Literaturrecherche zeigen, dass das Umland sowie die anthropogenen Einflüsse einen wichtigen Faktor bei der Förderung der Schwebfliegen darstellen. Die erstellte Staudenmischpflanzung erfüllt, die in der Literatur erarbeiteten Erkenntnisse

    Determinants of tetanus, pneumococcal and influenza vaccination in the elderly: a representative cross-sectional study on knowledge, attitude and practice (KAP)

    Get PDF
    Severity and incidence of vaccine-preventable infections with influenza viruses, s. pneumoniae and c. tetani increase with age. Furthermore, vaccine coverage in the elderly is often insufficient. The aim of this study is to identify socio-economic and knowledge-, attitude- and practice- (KAP)-related determinants of vaccination against influenza, pneumococcal disease and tetanus in the older German population

    Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    Get PDF
    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the ~ physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry

    Loss of Prox1

    Full text link
    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence

    Space Flight Qualification on a Multi-Fiber Ribbon Cable and Array Connector Assembly

    Get PDF
    NASA's Goddard Space Flight Center (GSFC) cooperatively with Sandia National Laboratories completed a series of tests on three separate configurations of multi-fiber ribbon cable and MTP connector assemblies. These tests simulate the aging process of components during launch and long-term space environmental exposure. The multi-fiber ribbon cable assembly was constructed of non-outgassing materials, with radiation-hardened, graded index 100/140-micron optical fiber. The results of this characterization presented here include vibration testing, thermal vacuum monitoring, and extended radiation exposure testing data

    Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    Get PDF
    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed
    corecore