124 research outputs found

    Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone

    Get PDF
    Observations taken over the last few decades indicate that dramatic changes are occurring in the ArcticBoreal Zone (ABZ), which are having significant impacts on ABZ inhabitants, infrastructure, flora and fauna, and economies. While suitable for detecting overall change, the current capability is inadequate for systematic monitoring and for improving processbased and largescale understanding of the integrated components of the ABZ, which includes the cryosphere, biosphere, hydrosphere, and atmosphere. Such knowledge will lead to improvements in Earth system models, enabling more accurate prediction of future changes and development of informed adaptation and mitigation strategies. In Duncan et al. (2020), we review the strengths and limitations of current spacebased observational capabilities for several important ABZ components and make recommendations for improving upon these current capabilities. We recommend an interdisciplinary and stepwise approach to develop a comprehensive ABZ Observing Network (ABZON), beginning with an initial focus on observing networks designed to gain processbased understanding for individual ABZ components and systems that can then serve as the building blocks for a comprehensive ABZON

    An analysis of convective transport, Lightning NO.sub.x production, and chemistry in midlatitude and subtropical thunderstorms

    Get PDF
    The impact of lightning NO.sub.x production and convective transport on tropospheric chemistry was studied in four thunderstorms observed during field projects using a 3-dimensional (3-D) cloud-scale chemical transport model (CSCTM). The dynamical evolution of each storm was simulated using a cloud-resolving model, and the output used to drive the off-line CSCTM which includes a parameterized source of lightning NO.sub.x based on observed cloud-to-ground (CG) and intracloud (IC) flash rates. Simulated mixing ratios of tracer species were compared to anvil aircraft observations to evaluate convective transport in the model. The production of NO per CG flash (P.sub.CG) was estimated based on mean observed peak current, and production per IC flash (P.sub.IC) was scaled to P.sub.CG. Different values of P.sub.IC/P.sub.CG were assumed and the results compared with in-cloud aircraft measurements to estimate the ratio most appropriate for each storm. The impact of lightning NO.sub.x on ozone and other species was examined during the storm in the CSCTM and following each storm in the convective plume using a chemistry-only version of the model which includes diffusion but without advection, and assumes clear-sky photolysis rates. New lightning parameterizations were implemented in the CSCTM. One parameterization uses flash length data, rather than flash rates, as input, and production per meter of flash channel length is estimated. A second parameterization simulates indivdual lightning flashes rather than distributing lightning NOx uniformly among a large number of gridcells to better reproduce the variability of observations. The results suggest that PIC is likely on the order of PCG and not significantly less as has been assumed in many global modeling studies. Mean values of PCG=500 moles NO and PIC=425 moles NO have been estimated from these simulations of midlatitude and subtropical continental thunderstorms. Based on the estimates of production per flash, and an assumed ratio of the number of IC to CG flashes and global flash rate, a global annual lightning NO source of 8.6 Tg N yr-1 is estimated. Based on these simulations, vertical profiles of lightning NOx mass for subtropical and midlatitude continental regimes have been computed for use in global and regional chemical transport models

    A Global Perspective of Atmospheric CO2 Concentrations

    Get PDF
    Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions

    Influence of Mid-Latitude Cyclones on European Background Surface Ozone Investigated in Observations, MACC and MERRA-2 Reanalyses

    Get PDF
    The relationship between springtime mid-latitude cyclones and background ozone at two rural monitoring sites on the west coast of Europe -- Mace Head, Ireland and Monte Velho, Portugal -- is explored using a combination of observations and three reanalyses: 1) the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-Interim reanalysis, 2) the Monitoring Atmospheric Composition and Climate (MACC) reanalysis and 3) NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis. The ERA-Interim cyclone tracks are used here to establish the long-term relationship between cyclones and ozone observations (since 1988). The MACC reanalysis data set, which covers the period 2003-2012, is produced with the ECMWF integrated forecast system (IFS) model two-way coupled to a chemistry transport model (CTM). Since the MACC reanalysis uses a similar atmospheric model to ERA-Interim, MACC is used to explore the mechanisms within the case study cyclones that can influence surface ozone concentrations at Mace Head and Monte Velho. The MERRA-2 reanalysis also provides 3D distributions of ozone, although less ideal for analysis of surface ozone concentrations since MERRA-2 ozone under represents ozone variability outside the stratosphere as it does not have a detailed chemistry scheme or emission sources for the troposphere. The MERRA-2 reanalysis, which has the potential to identify more features within the cyclones as the resolution is higher than the MACC reanalysis, is used in conjunction with the MACC reanalysis to provide a measure of uncertainty to the case study analysis. We found the main source of high ozone to these two sites is from the stratosphere, which is well represented in both the MERRA-2 and the MACC reanalyses, either from direct injection into the cyclone or associated with aged airstreams from decaying downstream cyclones that can become entrained and descend toward the surface within new cyclones over the NA region

    High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Get PDF
    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products

    The Effects of Lightning NO(x) Production during the July 21 EULINOX Storm studied with a 3-D Cloud-scale Chemical Transport Model

    Get PDF
    The July 21,1998 thunderstonn observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics, and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NO(x) production which uses observed flash rates as input. Estimates of lightning NO(x) production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N per yr. Chemical reactions were included in the model to evaluate the impact of lightning NO(x), on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO(x), maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO(x) causes decreased net ozone production

    Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (MiniLHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    Get PDF
    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment targe

    Tracer Transport Differences: Challenges and Implications for Flux Inversions

    Get PDF
    This poster demonstrates that different chemistry transport models (CTMs), each extensively validated, can have significant differences in the predicted transport of long-lived trace gases. For carbon dioxide (CO2), this difference is 0.5 ppm or greater in the total column. The value exceeds the nominal retrieval error requirements of the Total Carbon Column Observing Network (TCCON) and the Orbiting Carbon Observatory 2 (OCO-2), which were chosen based on the understanding of the accuracy necessary to infer surface fluxes of CO2 on regional and seasonal scales. This suggests that the transport errors of CTMs play a considerable role in the surface flux inversion of satellite-based measurements of long-lived trace gases and the interpretation of the inferred fluxes requires a careful understanding of this role

    An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    Get PDF
    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3 x 3.75 weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in the global sink from the tropics south to the north relative to the prior and to an in-situ-only inversion. We also find a smaller terrestrial sink in higher-latitude northern regions in boreal summer of 2010 relative to 2009
    • …
    corecore