26 research outputs found

    Inhibition of Copper Corrosion by self Assembled Amphiphiles

    Get PDF
    The advantage of nanolayers that can replace the traditional inhibitors of solids is the significant decrease in chemicals. The consequence is a lower environmental pollution. On a copper surface, special hydroxamic acid amphiphiles (CnH2n+1CONHOH, n =9–17) were used in self-assembled molecular layers (SAM). The impact of time in SAM formation as well as the carbon chain length in the amphiphilic molecules was in the focus of the experiments. The time-dependent layer structure was characterized by sum frequency vibrational spectroscopy. The anti-corrosion efficiency of nanolayers was measured by different electrochemical techniques (electrode impedance spectroscopy, polarization) and by micro-calorimeter. The comparative analysis of data proved that the increase in time of SAM formation up to 1 hour enhances the stability, the ordering as well as the efficiency of nanolayers. The length of the carbon chain in the SAM layer, less significantly increases the anticorrosion efficiency in a corrosive environment than the layer thickness in LB films

    Corrosion Protection of Synthetic Bronze Patina

    Get PDF
    Bronze artifacts are generally covered with green or blue coloured corrosion products called patina, which not only enhances the good appearance of the bronze, but also helps to protect it. Because of the increased air pollution and acid rain the large collection of statues and works of art made from bronze exposed in the urban environment could be damaged. The increase of air pollution damages also archaeological bronze objects exposed or stored in a museum. This is why it is necessary to find ways to improve the protection that the patina gives to bronze. In order to preserve metal works from the aggressive atmosphere, organic inhibitors are often employed. The inhibiting effects of two imidazole derivatives (4-methyl-1-phenylimidazole and 4-methyl-1-(p-tolyl)imidazole) on artificial patina were examined. The results of these investigations have shown that both inhibitors studied improve the protective properties of bronze patina in simulated urban acid rains

    Thermogalvanic effects on the corrosion of copper in heavy brine LiBr solutions

    Get PDF
    Thermogalvanic corrosion of copper in heavy brine LiBr solutions has been investigated using a zero-resistance ammeter (ZRA). The temperature gradients between copper electrodes immersed in the same LiBr solution result in the formation of thermogalvanic cells with hot anodes, leading to high and sustained thermogalvanic currents. Copper loss rates, calculated using Faraday's law, substantially exceed 0.025 mm year−1, a value regarded as the threshold of low corrosion rates. The effects of thermogalvanic coupling on the surface properties of the anode and the cathode have been analysed by means of electrochemical impedance spectroscopy (EIS). The results obtained in this analysis have been related to the process of copper electrodissolution in bromide media

    Electrochemical Oxidation Assessment and Interaction of 2-aminoethanol and N, N-diethylethanamine Propagation in Acidic Medium

    Get PDF
    Electro�oxidation and inhibitor performance of copper specimens in 1 M hydrochloric acid solu� tion was investigated at room temperature by linear potentiodynamic polarization and gravimetric method in the presence of 2�aminoethanol (A) and N, N�diethylethanamine (D) as an inorganic inhibitor. The effect of the inhibitory concentration on the corrosion behavior of copper was studied over 288 hrs at 298°K. The inhibitory efficiency rise up to 96% for single induced and 98% for synergistic behavior. The adsorption mechanism characteristic was supported by SEM/EDX analysis and adsorption isotherm. From all indica� tion, the inhibitive efficiency of these compounds majorly depends on their molecular structure and concen� tration. The blocking effects of the surface interface were also explained on the basis of the inhibitor active action. 2�aminoethanol and N, N�diethylethanamine inhibits copper in 1 M HCl by strictly affecting both the anodic and cathodic sites. Portion of the surface covered calculated was also found to follow Langmuir adsorption isotherm

    Corrosion Protection of Synthetic Bronze Patina

    Get PDF
    Bronze artifacts are generally covered with green or blue coloured corrosion products called patina, which not only enhances the good appearance of the bronze, but also helps to protect it. Because of the increased air pollution and acid rain the large collection of statues and works of art made from bronze exposed in the urban environment could be damaged. The increase of air pollution damages also archaeological bronze objects exposed or stored in a museum. This is why it is necessary to find ways to improve the protection that the patina gives to bronze. In order to preserve metal works from the aggressive atmosphere, organic inhibitors are often employed. The inhibiting effects of two imidazole derivatives (4-methyl-1-phenylimidazole and 4-methyl-1-(p-tolyl)imidazole) on artificial patina were examined. The results of these investigations have shown that both inhibitors studied improve the protective properties of bronze patina in simulated urban acid rains

    Inhibition of Copper Corrosion by self Assembled Amphiphiles

    Get PDF
    The advantage of nanolayers that can replace the traditional inhibitors of solids is the significant decrease in chemicals. The consequence is a lower environmental pollution. On a copper surface, special hydroxamic acid amphiphiles (CnH2n+1CONHOH, n =9–17) were used in self-assembled molecular layers (SAM). The impact of time in SAM formation as well as the carbon chain length in the amphiphilic molecules was in the focus of the experiments. The time-dependent layer structure was characterized by sum frequency vibrational spectroscopy. The anti-corrosion efficiency of nanolayers was measured by different electrochemical techniques (electrode impedance spectroscopy, polarization) and by micro-calorimeter. The comparative analysis of data proved that the increase in time of SAM formation up to 1 hour enhances the stability, the ordering as well as the efficiency of nanolayers. The length of the carbon chain in the SAM layer, less significantly increases the anticorrosion efficiency in a corrosive environment than the layer thickness in LB films
    corecore