48 research outputs found

    Correlations Between Parental Inbred Lines and Derived Hybrid Performance for Grain Filling Traits in Maize

    Get PDF
    Individual kernel weight (KW) is largely genetically determined, and its variability is achieved through different combinations of rate and duration of kernel growth. Genetic variability for grain-filling patterns has been observed among inbred lines and commercial hybrids, and there is current interest on dissecting its genetic basis. However, suitable grain filling phenotyping protocols are still to be determined, such as the value to study traits at the inbred or hybrid levels. The objective of our study was to evaluate the correlation between parental inbred line and derived hybrid performance for several grain-filling traits in maize (Zea mays L.). We hypothesized that there would be high correlations due to the relative high heritability of grainfilling traits. Three trials were conducted (two in Argentina and one in the United States) with commercial relevant germplasm (totaling 25 parental inbreds and 31 single-cross hybrids). Traits were KW, kernel growth rate (KGR), grainfilling duration (GFD), maximum water content (MWC), moisture concentration at physiological maturity (MCPM), and kernel desiccation rate (KDR) during the effective grain filling. Both heterosis and correlations between midparental value and hybrid performance were significant (p < 0.05) for all traits (r values of 0.63, 0.71, 0.81, 0.83, 0.61, and 0.71 for KW, KGR, GFD, MWC, KDR, and MCPM, respectively). Our results confirm that studying inbred lines for grain-filling traits generates valuable information for derived hybrid performanceFil: Alvarez Prado, Santiago. Universidad Nacional de Rosario. Facultad de Cs.agrarias. Departamento de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gambin, Brenda Laura. Universidad Nacional de Rosario. Facultad de Cs.agrarias. Departamento de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Novoa, A. Daniel. Nidera S. A; ArgentinaFil: Foster, Daniel. Syngenta Seeds; Estados UnidosFil: Senior, M. Lynn. Syngenta Biotechnology,; Estados UnidosFil: Zinselmeier, Christopher. Syngenta Seeds; Estados UnidosFil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Borras, Lucas. Universidad Nacional de Rosario. Facultad de Cs.agrarias. Departamento de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Kernel weight in maize: genetic control of its physiological and compositional determinants in a dent × flint-caribbean RIL population

    Get PDF
    The genetic control of maize kernel weight (KW) determination could be studied through its physiological and/ or compositional determinants. Our objective was to dissect the genetic control of maize KW by analyzing its physiological (KGR: kernel growth rate; KFD: kernel filling duration) and compositional (protein, oil, starch) determinants in a dent×flint Caribbean RIL population, which combines a broad genetic background with grains of high added value for industry. An additional objective was to determine the stability of the genetic control under contrasting growing conditions, for which soil nitrogen offer was modified across experiments. Heritability (H2 ) values were high for KW (H2 = 0.74) and intermediate for the other traits (from 0.62 to 0.42). Kernel weight had a strong correlation with KFD (r = 0.69), KGR (r = 0.60) and protein concentration (r = 0.56). Ten joint QTL with inconsistent effects across years and seven epistatic interactions were detected. Despite changes in effect size, most QTL were significant under both environments. Nine QTL were associated with variations in potential KW (KWP), mean KW, KGR and oil concentration, eight with variations in protein and starch concentration and seven with KFD. Epistatic interactions were related to regions with significant main effects. The most important finding was the existence of a common QTL for KWP, KGR and KFD on chromosome 5, for which there was no previous report. Results increased our knowledge on the genetic control of KW through its phenotypic and genetic correlation with KFD, confirming the need to explore different physiological strategies in different genetic backgrounds.Fil: Mandolino, Cecilia Ines. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: D'andrea, Karina Elizabeth. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: Piedra, Carlina Victoria. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: Alvarez Prado, Santiago. Institut National de la Recherche Agronomique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Olmos, Sofia Eugenia. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: Cirilo, Alfredo Gabriel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentin

    Over-dispersed Trypanosoma cruzi parasite load in sylvatic and domestic mammals and humans from northeastern Argentina

    Get PDF
    Background: The distribution of parasite load across hosts may modify the transmission dynamics of infectious diseases. Chagas disease is caused by a multi-host protozoan, Trypanosoma cruzi, but the association between host parasitemia and infectiousness to the vector has not been studied in sylvatic mammalian hosts. We quantified T. cruzi parasite load in sylvatic mammals, modeled the association of the parasite load with infectiousness to the vector and compared these results with previous ones for local domestic hosts. Methods: The bloodstream parasite load in each of 28 naturally infected sylvatic mammals from six species captured in northern Argentina was assessed by quantitative PCR, and its association with infectiousness to the triatomine Triatoma infestans was evaluated, as determined by natural or artificial xenodiagnosis. These results were compared with our previous results for 88 humans, 70 dogs and 13 cats, and the degree of parasite over-dispersion was quantified and non-linear models fitted to data on host infectiousness and bloodstream parasite load. Results: The parasite loads of Didelphis albiventris (white-eared opossum) and Dasypus novemcinctus (nine-banded armadillo) were directly and significantly associated with infectiousness of the host and were up to 190-fold higher than those in domestic hosts. Parasite load was aggregated across host species, as measured by the negative binomial parameter, k, and found to be substantially higher in white-eared opossums, cats, dogs and nine-banded armadillos (range: k = 0.3–0.5) than in humans (k = 5.1). The distribution of bloodstream parasite load closely followed the “80–20 rule” in every host species examined. However, the 20% of human hosts, domestic mammals or sylvatic mammals exhibiting the highest parasite load accounted for 49, 25 and 33% of the infected triatomines, respectively. Conclusions: Our results support the use of bloodstream parasite load as a proxy of reservoir host competence and individual transmissibility. The over-dispersed distribution of T. cruzi bloodstream load implies the existence of a fraction of highly infectious hosts that could be targeted to improve vector-borne transmission control efforts toward interruption transmission. Combined strategies that decrease the parasitemia and/or host–vector contact with these hosts would disproportionally contribute to T. cruzi transmission control.Fil: Enriquez, Gustavo Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Bua, Jacqueline Elena. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán". Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orozco, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Macchiaverna, Natalia Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Alvarado Otegui, Julián Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Argibay, Hernán Darío. Fundación Oswaldo Cruz; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernandez, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Washington State University; Estados UnidosFil: Gurtler, Ricardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Cardinal, Marta Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    An Interdisciplinary Approach to Study the Performance of Second-generation Genetically Modified Crops in Field Trials: A Case Study With Soybean and Wheat Carrying the Sunflower HaHB4 Transcription Factor

    Get PDF
    Research, production, and use of genetically modified (GM) crops have split the world between supporters and opponents. Up to now, this technology has been limited to the control of weeds and pests, whereas the second generation of GM crops is expected to assist farmers in abiotic stress tolerance or improved nutritional features. Aiming to analyze this subject holistically, in this presentation we address an advanced technology for drought-tolerant GM crops, upscaling from molecular details obtained in the laboratory to an extensive network of field trials as well as the impact of the introduction of this innovation into the market. Sunflower has divergent transcription factors, which could be key actors in the drought response orchestrating several signal transduction pathways, generating an improved performance to deal with water deficit. One of such factors, HaHB4, belongs to the homeodomain-leucine zipper family and was first introduced in Arabidopsis. Transformed plants had improved tolerance to water deficits, through the inhibition of ethylene sensitivity and not by stomata closure. Wheat and soybean plants expressing the HaHB4 gene were obtained and cropped across a wide range of growing conditions exhibiting enhanced adaptation to drought-prone environments, the most important constraint affecting crop yield worldwide. The performance of wheat and soybean, however, differed slightly across mentioned environments; whereas the improved behavior of GM wheat respect to controls was less dependent on the temperature regime (cool or warm), differences between GM and wild-type soybeans were remarkably larger in warmer compared to cooler conditions. In both species, these GM crops are good candidates to become market products in the near future. In anticipation of consumers’ and other stakeholders’ interest, spectral analyses of field crops have been conducted to differentiate these GM crops from wild type and commercial cultivars. In this paper, the potential impact of the release of such market products is discussed, considering the perspectives of different stakeholders.Fil: González, Fernanda Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Rigalli, Nicolas Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Miranda, Patricia Vivian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Agrobiotecnología de Rosario; ArgentinaFil: Romagnoli, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Ribichich, Karina Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Trucco, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Agrobiotecnología de Rosario; ArgentinaFil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Chan, Raquel Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin

    Consumo y eficiencia en el uso de agua

    No full text
    Descripción de los contenidos y objetivos de cada capítuloLos sucesivos capítulos del libro van desarrollando los distintos aspectos delesquema conceptual que hemos presentado. Así, luego del Capítulo 1 que describela situación mundial y local del maiz, se discute en el Capítulo 2 el desarrollo delcultivo analizando las fases en que se divide el ciclo del maíz, los componentes delrendimiento que quedan fijados en cada una de ellas y los factores ambientalesque controlan la duración de las fases. En el Capítulo 3 se discuten los factores quedeterminan el crecimiento del cultivo y se analiza la acumulación de biomasa y supartición entre los distintos órganos de la planta. En los siguientes dos capítulos(Capítulo 4 y Capítulo 5) se indaga sobre la determinación del rendimiento a travésde sus componentes, es decir, el número de granos por unidad de superficie y elpeso medio del grano. En el Capítulo 6 se discute la relación entre la demanda delos destinos reproductivos y la fuente de asimilados durante el llenado de granos.Los siguientes dos capítulos (Capítulo 7 y Capítulo 8) tratan sobre los requerimientos y el consumo de agua y nutrientes y los efectos de dichos factores sobre loscomponentes ecofisiológicos del crecimiento y rendimiento del maíz. Los siguientes cinco capítulos (del Capítulo 9 al Capítulo 13) detallan los efectos de prácticasde manejo de fuerte impacto sobre la producción de maíz como son la fecha desiembra, la densidad de plantas, el espaciamiento entre hileras, la uniformidad y laelección del cultivar, considerando los principios ecofisiológicos presentados en ellibro. El Capítulo 14 enfatiza la relevancia de alcanzar una producción sostenible,desacoplando la producción del impacto ambiental, y destaca el rol del cultivo demaíz para alcanzar dicho objetivo. El Capítulo 15 presenta los aspectos ecofisiológicos de la determinación de la calidad del grano. Finalmente, los efectos delmejoramiento genético sobre el rendimiento y sus determinantes ecofisiológicos, lainteracción genotipo por ambiente, y los principales elementos de un programa demejoramiento genético se presentan del Capítulo 16 al Capítulo 18. Al final de cadacapítulo se reseñan los principales conceptos prácticos o las conclusiones de lostemas abordados.Fil: Echarte, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentin

    Tendencias en rendimiento de maíz entre híbridos actuales y anteriores según fecha de siembra

    No full text
    La ganancia global de rendimiento en grano de maíz en Argentina, considerando mejoras genéticas y de manejo agronómico, ha sido pequeña en la última década. Esto coincide con la fuerte adopción de maíz de siembra tardía con reducciones en el peso individual del grano, alertando sobre la necesidad de atender la obtención de híbridos adaptados a tales siembras en los programas de mejoramiento.Fil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Cirilo, Alfredo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentin

    Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use

    No full text
    Maize (Zea mays L.) hybrids with tropical genetic background are a promising source of heat stress tolerance, but their performance in high yielding environments remains poorly understood. Our objective was to assess (i) genotypic differences in the ecophysiological determinants of grain yield; i.e., fraction of light intercepted by crop (fIPAR), radiation use efficiency for biomass production (RUE), and harvest index (HI), and (ii) the responses of mentioned traits to brief episodes of high temperature. The contribution of stored reserves to grain yield was also analyzed. Field experiments included three contrasting maize hybrids (Te: temperate; Tr: tropical; TeTr: Te×Tr) grown under two temperature regimes (control and heated) during daytime hours. We tested heating (ca. 33-40°C at ear level) along three 15-d periods (GS 1: pre-silking; GS 2: from silking onwards: GS 3: active grain filling). Heat stress had no effect on leaf area and fIPAR, but heating during grain filling affected light capture through reduced cycle duration, especially for the Te hybrid (average of -16.5 d). Heating caused a large reduction in RUE, but this trait had a rapid recovery after heat removal and final shoot biomass was not much affected (between -3% and -33%). HI was markedly reduced by heating and its variation was associated with changes in reserves use (r 2=0.61). Grain yield in heated plots was better explained (r 2≥0.92) by the variation in HI than by the variation in final shoot biomass (r 2≥0.59). Heat effects on grain yield were larger (i) when they occurred around flowering (-527gm -2 for GS 1 and -545gm -2 for GS 2) than during grain filling (-352gm -2 for GS 3), and (ii) for the Te hybrid (-599gm -2) than for the TeTr (-440gm -2) and the Tr hybrids (-384gm -2). Heating around silking (GS 1 and GS 2) caused apparent accumulation of reserves during the effective grain-filling period. The opposite trend was detected among plots heated during active grain formation (GS 3). The tropical genetic background did not penalize yield potential and conferred an enhanced capacity for enduring heat effects. © 2012 Elsevier B.V.Fil: Rattalino Edreira, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentin

    Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions

    No full text
    Temperate and tropical maize differ in their tolerance to heat stress but the ecophysiological bases for genotypic differences are poorly Understood. Our objectives were (i) to assess the sources of kernel loss, and (ii) to identify the main differences in these traits among genotypes of contrasting genetic background. We used the classic relationships that associate final kernel number per plant (KNP) with plant (PGRCP) and ear (EGRCP) growth rates during the critical period for kernel set and Developed an alternative approach based on the combined analysis of these relationships for assessing sources of kernel loss in field conditions. We identified three sources of loss associated with (i) PGRCP reductions (KNP1), (ii)changes in biomass partitioning to the ear (KNP2), and (iii) constraints not directly related to assimilate allocation to the ear (KNP3). A partitioning index was also established (PI = EGRCP PGRCP −1). Field experiments included three contrasting maize hybrids (Te: temperate; Tr: tropical; TeTr: Te×Tr) grown under two temperature regimes (control and heated) during daytime hours. We tested heating (ca. 33–40 ◦C at ear level) along two 15-d periods (GS1: pre-anthesis; GS2: from silking onwards). Final KNP was severely reduced by heating, and this negative effect was larger (i) when it occurred during silking (−75% for GS2)than before anthesis (−52% for GS1), and (ii) for the Te hybrid (−77%) than the TeTr (−69%) and the Tr (−44%) hybrids. The contribution of each source of loss to the decrease in KNP was 47% for KNP1, 27% for KNP2, and 32% for KNP3. Variations in KNP2 were explained by changes in PI (r2 = 0.85, P < 0.001), and a critical PI value (0.25) for avoiding kernel loss due to KNP2 was established. A similar pattern among genotypes was found for the response of KNP to variations in both PGRCP and EGRCP, but the new approach indicated that enhanced tolerance of the tropical genotype was mainly associated with reduced KNP3.Fil: Rattalino Edreira, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina;Fil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina

    Progreso de rendimiento en trigo argentino en los últimos 30 años bajo condiciones potenciales y limitadas por nitrógeno y/o agua

    No full text
    El progreso genético del rendimiento en trigo resultó de 0,8 % anual para los cultivares liberados en los últimos 30 años. Dicho progreso se mantuvo ante condiciones limitantes de nitrógeno y agua, reforzando la idea de que la mejora genética en ambientes potenciales se trasladaría a ambientes limitantes. La mejora del rendimiento estuvo asociado principalmente a un aumento en el número de granos e índice de cosecha.Fil: Curin, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y Ambientales; ArgentinaFil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: González, Fernanda Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y Ambientales; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentin

    Kernel water relations and duration of grain filling in maize temperate hybrids

    Get PDF
    Kernel water relations play a key role in controlling the duration of grain filling. This duration is controlled by the relationship between kernel water and biomass development, as it determines the timing kernels reach a critical percent moisture content (MC, measured on a fresh weight basis) at which biomass accumulation stops. The time in which this critical percent MC is attained can be affected by the timing kernel net water uptake stops (i.e. maximum water content is reached), or by the relationship between water loss and biomass deposition after maximum water content is attained. Which of the two mechanisms could be behind genotypic differences in maize (Zea mays L.) grain-filling duration was unknown. We also studied the relationship between kernel water and volume development, as it was unknown in this species. Thirteen commercial hybrids were evaluated under different growing environments, and weight, water content and volume of their kernels were measured throughout grain filling. There were no differences among hybrids in their kernel percent MC at physiological maturity (p > 0.05), showing that hybrid differences in grain-filling duration (from 1117 to 1470 °C day) were related to variations in the accumulated thermal time from flowering to this critical percent MC. There were no differences in the accumulated thermal time from silking to kernel maximum water content, and this stage was always reached at the same kernel percent MC (ca. 540 g kg-1). Differences in grain-filling duration were explained by the pattern of percent MC decline after maximum water content was reached. This percent MC decline was dependent upon the relationship between water loss and biomass deposition; the higher the water loss rate and the higher the kernel growth rate the shorter the duration (r2 = 0.60; p < 0.001). Maximum kernel volume was achieved after maximum water content, and close to physiological maturity. Hybrids differed (p < 0.05) in the kernel volume generated after maximum water content, and this was also related to the relationship between biomass and water development late in grain filling. Results showed the importance of understanding and predicting percent MC development throughout grain filling, as there were no differences between hybrids and environments in their kernel percent MC at specific developmental stages (i.e. maximum water content or physiological maturity). Our results highlighted the importance of the relationship between water loss and biomass deposition during late kernel development in the duration of maize grain filling.Fil: Gambin, Brenda Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Borras, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentin
    corecore