2,982 research outputs found

    Vibration in Planetary Gear Systems with Unequal Planet Stiffnesses

    Get PDF
    An algorithm suitable for a minicomputer was developed for finding the natural frequencies and mode shapes of a planetary gear system which has unequal stiffnesses between the Sun/planet and planet/ring gear meshes. Mode shapes are represented in the form of graphical computer output that illustrates the lateral and rotational motion of the three coaxial gears and the planet gears. This procedure permits the analysis of gear trains utilizing nonuniform mesh conditions and user specified masses, stiffnesses, and boundary conditions. Numerical integration of the equations of motion for planetary gear systems indicates that this algorithm offers an efficient means of predicting operating speeds which may result in high dynamic tooth loads

    Electron-spectroscopic investigation of metal-insulator transition in Sr2Ru1-xTixO4 (x=0.0-0.6)

    Full text link
    We investigate the nature and origin of the metal-insulator transition in Sr2Ru1-xTixO4 as a function of increasing Ti content (x). Employing detailed core, valence, and conduction band studies with x-ray and ultraviolet photoelectron spectroscopies along with Bremsstrahlung isochromat spectroscopy, it is shown that a hard gap opens up for Ti content greater than equal to 0.2, while compositions with x<0.2 exhibit finite intensity at the Fermi energy. This establishes that the metal-insulator transition in this homovalent substituted series of compounds is driven by Coulomb interaction leading to the formation of a Mott gap, in contrast to transitions driven by disorder effects or band flling.Comment: Accepted for publication in Phys. Rev.

    Channel Flow of a Tensorial Shear-Thinning Maxwell Model: Lattice Boltzmann Simulations

    Full text link
    We introduce a nonlinear generalized tensorial Maxwell-type constitutive equation to describe shear-thinning glass-forming fluids, motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions. The model captures a nonvanishing dynamical yield stress at the glass transition and incorporates normal-stress differences. A modified lattice-Boltzmann (LB) simulation scheme is presented that includes non-Newtonian contributions to the stress tensor and deals with flow-induced pressure differences. We test this scheme in pressure-driven 2D Poiseuille flow of the nonlinear generalized Maxwell fluid. In the steady state, comparison with an analytical solution shows good agreement. The transient dynamics after startup and cessation of the pressure gradient are studied; the simulation reproduces a finite stopping time for the cessation flow of the yield-stress fluid in agreement with previous analytical estimates

    Cryosorber Studies for the LHC Long Straight Section Beam Screens with COLDEX

    Get PDF
    The cold bore experiment (COLDEX), that can be cooled below 3 K, has been fitted with a ~ 2 m long actively cooled beam screen equipped with cryosorber to simulate the LHC Long Straight Section (LSS) beam screens. Effects of both synchrotron radiation at grazing incidence with 194 eV critical energy and gas injections have been studied. Results as a function of temperature, gas species and gas coverage are presented. Possible implications to LHC LSS design and operation are discussed

    Synchrotron radiation studies of the LHC dipole beam screen with COLDEX

    Get PDF
    The cold bore experiment (COLDEX) installed in a beam line of the electron-positron accumulator (EPA) at CERN, has been used to study the effect of synchrotron radiation onto the LHC dipole beam screen. The ~ 2 m long cryostat, that can be cooled below 3 K, is fitted with an actively cooled beam screen. A 'sawtooth' copper co-laminated type beam screen has been submitted to grazing synchrotron radiation with 194 eV critical energy. Experiments studying the effect of photon dose, gas condensation onto beam screen or cold bore and temperature oscillations is presented. Implications to LHC operation is discussed

    Photon Stimulated Desorption and the Effect of Cracking of Condensed Molecules in a Cryogenic Vacuum System

    Get PDF
    The design of the Large Hadron Collider (LHC) vacuum system requires a complete understanding of all processes which may affect the residual gas density in the cold bore of the 1.9 K cryomagnets. A wealth of data has been obtained which may be used to predict the residual gas density inside a cold vacuum system exposed to synchrotron radiation. In this study the effect of cracking of cryosorbed molecules by synchrotron radiation photons has been included. Cracking of the molecular species CO2 and CH4 has been observed in recent studies and these findings have been incorporated in a more detailed dynamic gas density model for the LHC. In this paper, we describe the relevant physical processes and the parameters required for a full evaluation. It is shown that the dominant gas species in the LHC vacuum system with its beam screen are H2 and CO. The important result of this study is that while the surface coverage of cryosorbed CH4 and CO2 molecules is limited due to cracking, the coverage of H2 and CO molecules may increase steadily during the long term operation of the machine

    First Results from COLDEX Applicable to the LHC Cryogenic Vacuum System

    Get PDF
    A cold bore experiment (COLDEX) has been installed in the electron-positron accumulator (EPA) at CERN. The ~2 m long COLDEX cryostat, that may be cooled to below 3 K, is fitted with an actively cooled perforated beam screen to simulate the conditions in the cold arcs of the LHC. Initially, gas desorption yields were obtained using an external synchrotron radiation beam line by exposing the beam screen to grazing incident radiation with a critical energy of 194 eV. In an extended period of EPA operation and during a dedicated period for LHC studies, COLDEX was installed into the EPA ring to study more specifically the influence of the bunched positron and electron beams with the cold bore / beam screen vacuum system. The results from these experiments and some predictions applicable for the LHC will be presented

    Dynamic Analysis of Spur Gear Transmissions (DANST). PC Version 3.00 User Manual

    Get PDF
    DANST is a FORTRAN computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the static transmission error, dynamic load, tooth bending stress and other properties of spur gears as they are influenced by operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratios ranging from one to three. It was designed to be easy to use and it is extensively documented in several previous reports and by comments in the source code. This report describes installing and using a new PC version of DANST, covers input data requirements and presents examples

    Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions

    Full text link
    The time evolution of a closed quantum system is connected to its Hamiltonian through Schroedinger's equation. The ability to estimate the Hamiltonian is critical to our understanding of quantum systems, and allows optimization of control. Though spectroscopic methods allow time-independent Hamiltonians to be recovered, for time-dependent Hamiltonians this task is more challenging. Here, using a single trapped ion, we experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. The method involves measuring the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. In our system the initially unknown Hamiltonian arises from transporting an ion through a static, near-resonant laser beam. Hamiltonian estimation allows us to estimate the spatial dependence of the laser beam intensity and the ion's velocity as a function of time. This work is of direct value in optimizing transport operations and transport-based gates in scalable trapped ion quantum information processing, while the estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high operational fidelities in quantum control.Comment: 10 pages, 8 figure

    Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations

    Get PDF
    Investigations of soil-root interactions are hampered by the difficult experimental accessibility of the rhizosphere. Here we show the potential of Magnetic Resonance Imaging (MRI) as a non-destructive measurement technique in combination with numerical modelling to study the dynamics of the spatial distribution of dissolved nickel (Ni2+) around the roots of the nickel hyperaccumulator plant Berkheya coddii. Special rhizoboxes were used in which a root monolayer had been grown, separated from an adjacent inert glass bead packing by a nylon membrane. After applying a Ni2+ solution of 10mgl−1, the rhizobox was imaged repeatedly using MRI. The obtained temporal sequence of 2-dimensional Ni2+ maps in the vicinity of the roots showed that Ni2+ concentrations increased towards the root plane, revealing an accumulation pattern. Numerical modelling supported the Ni2+ distributions to result from advective water flow towards the root plane, driven by transpiration, and diffusion of Ni2+ tending to eliminate the concentration gradient. With the model, we could study how the accumulation pattern of Ni2+ in the root zone transforms into a depletion pattern depending on transpiration rate, solute uptake rate, and Ni2+ concentration in solutio
    corecore