188 research outputs found

    Receptor Number and Caveolar Co-Localization Determine Receptor Coupling Efficiency to Adenylyl Cyclase

    Get PDF
    Recent evidence suggests that many signaling molecules localize in microdomains of the plasma membrane, particularly caveolae. In this study, overexpression of adenylyl cyclase was used as a functional probe of G protein-coupled receptor (GPCR) compartmentation. We found that three endogenous receptors in neonatal rat cardiomyocytes couple with different levels of efficiency to the activation of adenylyl cyclase type 6 (AC6), which localizes to caveolin-rich membrane fractions. Overexpression of AC6 enhanced the maximal cAMP response to β1-adrenergic receptor (β1AR)-selective activation 3.7-fold, to β2AR-selective activation only 1.6-fold and to prostaglandin E2 (PGE2) not at all. Therefore, the rank order of efficacy in coupling to AC6 is β1AR \u3e β2AR \u3e prostaglandin E2 receptor (EP2R). β2AR coupling efficiency was greater when we overexpressed the receptor or blocked its desensitization by expressing βARKct, an inhibitor of G protein-coupled receptor kinase activation, but was not significantly greater when cells were treated with pertussis toxin. Assessment of receptor and AC expression indicated co-localization of AC5/6, β1AR, and β2AR, but not EP2R, in caveolin-rich membranes and caveolin-3 immunoprecipitates, likely explaining the observed activation of AC6 by βAR subtypes but lack thereof by PGE2. When cardiomyocytes were stimulated with a βAR agonist, β2AR were no longer found in caveolin-3 immunoprecipitates; an effect that was blocked by expression of βARKct. Thus, agonist-induced translocation of β2AR out of caveolae causes a sequestration of receptor from effector and likely contributes to the lower efficacy of β2AR coupling to AC6 as compared with β1AR, which do not similarly translocate. Therefore, spatial co-localization is a key determinant of efficiency of coupling by particular extracellular signals to activation of GPCR-linked effectors

    The Secret to Successful User Communities: An Analysis of Computer Associates’ User Groups

    Get PDF
    This paper provides the first large scale study that examines the impact of both individual- and group-specific factors on the benefits users obtain from their user communities. By empirically analysing 924 survey responses from individuals in 161 Computer Associates' user groups, this paper aims to identify the determinants of successful user communities. To measure success, the amount of time individual members save through having access to their user networks is used. As firms can significantly profit from successful user communities, this study proposes four key implications of the empirical results for the management of user communities

    X-linked serotonin 2C receptor is associated with a non-canonical pathway for sudden unexpected death in epilepsy.

    Get PDF
    Sudden Unexpected Death in Epilepsy is a leading cause of epilepsy-related mortality, and the analysis of mouse Sudden Unexpected Death in Epilepsy models is steadily revealing a spectrum of inherited risk phenotypes based on distinct genetic mechanisms. Serotonin (5-HT) signalling enhances post-ictal cardiorespiratory drive and, when elevated in the brain, reduces death following evoked audiogenic brainstem seizures in inbred mouse models. However, no gene in this pathway has yet been linked to a spontaneous epilepsy phenotype, the defining criterion of Sudden Unexpected Death in Epilepsy. Most monogenic models of Sudden Unexpected Death in Epilepsy invoke a failure of inhibitory synaptic drive as a critical pathogenic step. Accordingly, the G protein-coupled, membrane serotonin receptor 5-HT2C inhibits forebrain and brainstem networks by exciting GABAergic interneurons, and deletion of this gene lowers the threshold for lethal evoked audiogenic seizures. Here, we characterize epileptogenesis throughout the lifespan of mice lacking X-linked, 5-HT2C receptors (loxTB Htr2c). We find that loss of Htr2c generates a complex, adult-onset spontaneous epileptic phenotype with a novel progressive hyperexcitability pattern of absences, non-convulsive, and convulsive behavioural seizures culminating in late onset sudden mortality predominantly in male mice. RNAscope localized Htr2c mRNA in subsets of Gad2+ GABAergic neurons in forebrain and brainstem regions. To evaluate the contribution of 5-HT2C receptor-mediated inhibitory drive, we selectively spared their deletion in GAD2+ GABAergic neurons of pan-deleted loxTB Htr2c mice, yet unexpectedly found no amelioration of survival or epileptic phenotype, indicating that expression of 5-HT2C receptors in GAD2+ inhibitory neurons was not sufficient to prevent hyperexcitability and lethal seizures. Analysis of human Sudden Unexpected Death in Epilepsy and epilepsy genetic databases identified an enrichment of HTR2C non-synonymous variants in Sudden Unexpected Death in Epilepsy cases. Interestingly, while early lethality is not reflected in the mouse model, we also identified variants mainly among male Sudden Infant Death Syndrome patients. Our findings validate HTR2C as a novel, sex-linked candidate gene modifying Sudden Unexpected Death in Epilepsy risk, and demonstrate that the complex epilepsy phenotype does not arise solely from 5-HT2C-mediated synaptic disinhibition. These results strengthen the evidence for the serotonin hypothesis of Sudden Unexpected Death in Epilepsy risk in humans, and advance current efforts to develop gene-guided interventions to mitigate premature mortality in epilepsy.Peer reviewe

    The first oviraptorosaur (Dinosauria: Theropoda) bonebed: Evidence of gregarious behaviour in a maniraptoran theropod

    Get PDF
    A monodominant bonebed of Avimimus from the Nemegt Formation of Mongolia is the first oviraptorosaur bonebed described and the only recorded maniraptoran bonebed from the Late Cretaceous. Cranial elements recovered from the bonebed provide insights on the anatomy of the facial region, which was formerly unknown in Avimimus. Both adult and subadult material was recovered from the bonebed, but small juveniles are underrepresented. The taphonomic and sedimentological evidence suggests that the Avimimus bonebed represents a perimortem gregarious assemblage. The near absence of juveniles in the bonebed may be evidence of a transient age-segregated herd or ‘flock’, but the behaviour responsible for this assemblage is unclear. Regardless, the Avimimus bonebed is the first evidence of gregarious behaviour in oviraptorosaurs, and highlights a potential trend of increasing gregariousness in dinosaurs towards the end of the Mesozoic

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore