71 research outputs found

    Budding of Taenia crassiceps Cysticerci In Vitro Is Promoted by Crowding in Addition to Hormonal, Stress, and Energy-Related Signals

    Get PDF
    Taenia crassiceps cysticerci (cysts) reproduce by budding. The cysts' production of buds was measured in vitro to explore parasite and environmental-related factors involved in the extreme individual variation in parasite loads of inbred mice. Cysts were placed in in vitro culture for 10 days at initial parasite densities of 1, 5, 10 cysts/well in 1 ml of RPMI Medium 1640 without serum. Results showed that there is considerable intrinsic initial variation among inoculated cysts in their production of buds and that increasing parasite density (crowding) stimulates the overall production of buds and recruit into budding most of the cysts. Identical cultures were then subjected to various treatments such as heating and exposure to peroxide to induce stress, or to 17ß-estradiol, insulin, glucose, or insulin+glucose to supplement putatively limiting hormonal and energy resources. All treatments increased budding but the parasites' strong budding response to crowding alone overshadows the other treatments

    Immunodiagnosis of Neurocysticercosis: Ways to Focus on the Challenge

    Get PDF
    Neurocysticercosis (NCC) is a disease of the central nervous system that is considered a public health problem in endemic areas. The definitive diagnosis of this disease is made using a combination of tools that include imaging of the brain and immunodiagnostic tests, but the facilities for performing them are usually not available in endemic areas. The immunodiagnosis of NCC is a useful tool that can provide important information on whether a patient is infected or not, but it presents many drawbacks as not all infected patients can be detected. These tests rely on purified or semipurified antigens that are sometimes difficult to prepare. Recent efforts have focused on the production of recombinant or synthetic antigens for the immunodiagnosis of NCC and interesting studies propose the use of new elements as nanobodies for diagnostic purposes. However, an immunodiagnostic test that can be considered as “gold standard” has not been developed so far. The complex nature of cysticercotic disease and the simplicity of common immunological assumptions involved explain the low scores and reproducibility of immunotests in the diagnosis of NCC. Here, the most important efforts for developing an immunodiagnostic test of NCC are listed and discussed. A more punctilious strategy based on the design of panels of confirmed positive and negative samples, the use of blind tests, and a worldwide effort is proposed in order to develop an immunodiagnostic test that can provide comparable results. The identification of a set of specific and representative antigens of T. solium and a thorough compilation of the many forms of antibody response of humans to the many forms of T. solium disease are also stressed as necessary

    Progesterone Induces Scolex Evagination of the Human Parasite Taenia solium: Evolutionary Implications to the Host-Parasite Relationship

    Get PDF
    Taenia solium cysticercosis is a health problem in underdeveloped and developed countries. Sex hormones are involved in cysticercosis prevalence in female and male pigs. Here, we evaluated the effects of progesterone and its antagonist RU486 on scolex evagination, which is the initial step in the development of the adult worm. Interestingly, progesterone increased T. solium scolex evagination and worm growth, in a concentration-independent pattern. Progesterone effects could be mediated by a novel T. solium progesterone receptor (TsPR), since RU486 inhibits both scolex evagination and worm development induced by progesterone. Using RT-PCR and western blot, sequences related to progesterone receptor were detected in the parasite. A phylogenetic analysis reveals that TsPR is highly related to fish and amphibian progesterone receptors, whereas it has a distant relation with birds and mammals. Conclusively, progesterone directly acts upon T. solium cysticerci, possibly through its binding to a progesterone receptor synthesized by the parasite

    The Long Road to the Immunodiagnosis of Neurocysticercosis: Controversies and Confusions

    Get PDF
    To date, even widely studied, there is not a standard diagnostic method to detect neurocysticercotic patients. The later due to the complex nature of cysticercosis disease and the simplicity of common immunological assumptions involved in explaining the low scores and reproducibility of immunotests in the diagnosis of neurocysticercosis. To begin with, the few studies dealing with the immune response during neurocysticercosis are not conclusive, which of course it is crucial to develop an immunodiagnostic test. Their full recognition should clear confusion and reduce controversy as well as provide avenues of research and technological design. In here, logical arguments add that even under common immunological assumptions, serology of neurocysticercosis will always include false negative and positive results. Thus, serology is no strong support for medical diagnosis of neurocysticercosis (NC). In contrast, immunotests performed in the cerebrospinal fluid (CSF) of neurological patients should have fewer false positive and fewer false negatives than in serum. To conclude, it is argued that high scores in serology for NC will not yield to usual approaches and that success needs of a concerted worldwide effort. A more punctilious strategy based on the design of panels of confirmed positive and negative sera needs to be construed, shared and tested by all interested groups to obtain comparable results. The identification of a set of specific and representative antigens of Taenia solium (T. solium) and a thorough compilation of the many forms of antibody response of humans to the many forms of T. solium disease are also to be considered as one of the most importants factors to the disease

    A New MAP Kinase Protein Involved in Estradiol-Stimulated Reproduction of the Helminth Parasite Taenia crassiceps

    Get PDF
    MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasite Taenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host and T. crassiceps, and may be considered as target for anti-helminth drugs design

    Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action.

    Get PDF
    Immunophilin is the collective name given to the cyclophilin and FK506-binding protein (FKBP) families. As the name suggests, these include the major binding proteins of certain immunosuppressive drugs: cyclophilins for the cyclic peptide cyclosporin A and FKBPs for the macrolactones FK506 and rapamycin. Both families, although dissimilar in sequence, possess peptidyl-prolyl <i>cis-trans</i> isomerase activity in vitro and can play roles in protein folding and transport, RNA splicing and the regulation of multiprotein complexes in cells. In addition to enzymic activity, many immunophilins act as molecular chaperones. This property may be conferred by the isomerase domain and/or by additional domains. Recent years have seen a great increase in the number of known immunophilin genes in parasitic protozoa and helminths and in many cases their products have been characterized biochemically and their temporal and spatial expression patterns have been examined. Some of these genes represent novel types: one example is a <i>Toxoplasma gondii</i> gene encoding a protein with both cyclophilin and FKBP domains. Likely roles in protein folding and oligomerisation, RNA splicing and sexual differentiation have been suggested for parasite immunophilins. In addition, unexpected roles in parasite virulence (Mip FKBP of <i>Trypanosoma cruzi</i>) and host immuno-modulation (e.g. 18-kDa cyclophilin of <i>Toxoplasma gondii</i>) have been established. Furthermore, in view of the potent antiparasitic activities of cyclosporins, macrolactones and nonimmunosuppressive derivatives of these compounds, immunophilins may mediate drug action and/or may themselves represent potential drug targets. Investigation of the mechanisms of action of these agents may lead to the design of potent and selective antimalarial and other antiparasitic drugs. This review discusses the properties of immunophilins in parasites and the 'animal model' <i>Caenorhabditis elegans</i> and relates these to our understanding of the roles of these proteins in cellular biochemistry, host-parasite interaction and the antiparasitic mechanisms of the drugs that bind to them

    Perturbation of the Dimer Interface of Triosephosphate Isomerase and its Effect on Trypanosoma cruzi

    Get PDF
    Most of the enzymes of parasites have their counterpart in the host. Throughout evolution, the three-dimensional architecture of enzymes and their catalytic sites are highly conserved. Thus, identifying molecules that act exclusively on the active sites of the enzymes from parasites is a difficult task. However, it is documented that the majority of enzymes consist of various subunits, and that conservation in the interface of the subunits is lower than in the catalytic site. Indeed, we found that there are significant differences in the interface between the two subunits of triosephosphate isomerase from Homo sapiens and Trypanosoma cruzi (TcTIM), which causes Chagas disease in the American continent. In the search for agents that specifically inhibit TcTIM, we found that 2,2′-dithioaniline (DTDA) is far more effective in inactivating TcTIM than the human enzyme, and that its detrimental effect is due to perturbation of the dimer interface. Remarkably, DTDA prevented the growth of Escherichia coli cells that had TcTIM instead of their own TIM and killed T. cruzi epimastigotes in culture. Thus, this study highlights a new approach base of targeting molecular interfaces of dimers

    The Stability and Formation of Native Proteins from Unfolded Monomers Is Increased through Interactions with Unrelated Proteins

    Get PDF
    The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins
    • …
    corecore