19 research outputs found

    Development of a Modular Biosensor System for Rapid Pathogen Detection

    Get PDF
    Progress in the field of pathogen detection relies on at least one of the following three qualities: selectivity, speed, and cost-effectiveness. Here, we demonstrate a proof of concept for an optical biosensing system for the detection of the opportunistic human pathogen Pseudomonas aeruginosa while addressing the abovementioned traits through a modular design. The biosensor detects pathogen-specific quorum sensing molecules and generates a fluorescence signal via an intracellular amplifier. Using a tailored measurement device built from low-cost components, the image analysis software detected the presence of P. aeruginosa in 42 min of incubation. Due to its modular design, individual components can be optimized or modified to specifically detect a variety of different pathogens. This biosensor system represents a successful integration of synthetic biology with software and hardware engineering

    Why are different estimates of the effective reproductive number so different? A case study on COVID-19 in Germany

    Get PDF
    The effective reproductive number Rt_t has taken a central role in the scientific, political, and public discussion during the COVID-19 pandemic, with numerous real-time estimates of this quantity routinely published. Disagreement between estimates can be substantial and may lead to confusion among decision-makers and the general public. In this work, we compare different estimates of the national-level effective reproductive number of COVID-19 in Germany in 2020 and 2021. We consider the agreement between estimates from the same method but published at different time points (within-method agreement) as well as retrospective agreement across eight different approaches (between-method agreement). Concerning the former, estimates from some methods are very stable over time and hardly subject to revisions, while others display considerable fluctuations. To evaluate between-method agreement, we reproduce the estimates generated by different groups using a variety of statistical approaches, standardizing analytical choices to assess how they contribute to the observed disagreement. These analytical choices include the data source, data pre-processing, assumed generation time distribution, statistical tuning parameters, and various delay distributions. We find that in practice, these auxiliary choices in the estimation of Rt_t may affect results at least as strongly as the selection of the statistical approach. They should thus be communicated transparently along with the estimates

    Why are different estimates of the effective reproductive number so different? A case study on COVID-19 in Germany.

    No full text
    The effective reproductive number Rt has taken a central role in the scientific, political, and public discussion during the COVID-19 pandemic, with numerous real-time estimates of this quantity routinely published. Disagreement between estimates can be substantial and may lead to confusion among decision-makers and the general public. In this work, we compare different estimates of the national-level effective reproductive number of COVID-19 in Germany in 2020 and 2021. We consider the agreement between estimates from the same method but published at different time points (within-method agreement) as well as retrospective agreement across eight different approaches (between-method agreement). Concerning the former, estimates from some methods are very stable over time and hardly subject to revisions, while others display considerable fluctuations. To evaluate between-method agreement, we reproduce the estimates generated by different groups using a variety of statistical approaches, standardizing analytical choices to assess how they contribute to the observed disagreement. These analytical choices include the data source, data pre-processing, assumed generation time distribution, statistical tuning parameters, and various delay distributions. We find that in practice, these auxiliary choices in the estimation of Rt may affect results at least as strongly as the selection of the statistical approach. They should thus be communicated transparently along with the estimates

    Scatter plot of mean generation time and corresponding standard deviation used by different research groups.

    No full text
    The red rhombus represents a “consensus value” chosen for further analysis, see Section 4.1. epiforecasts accounted for uncertainty in the generation time distribution by assuming independent normal priors for the mean and standard deviation; we illustrate the respective 95% uncertainty intervals by a cross. For context, we also show values used by public health agencies of other European countries. In the Netherlands (due to the transition to the Omicron variant) and Austria (due to a data update) the parameterization was revised. For details and references see Section B in S1 Text.</p

    <i>R</i><sub><i>t</i></sub> estimates published between October 1, 2020, and December 10, 2020, and a consolidated estimate published 6 months later (epiforecasts: 15 weeks later).

    No full text
    Note that different time periods are used for Ilmenau and globalrt as these were not operated during the period shown for the other models. The consolidated ETH intervals are wider than those issued in real time due to a revision of methodology. The line type represents the label assigned to the estimate by the respective team: solid: “estimate”, dashed: “estimate based on partial data”, dotted: “forecast”. Shaded areas show 95% uncertainty intervals.</p

    Step-by-step alignment of analytical choices to the consensus specifications.

    No full text
    The left column shows the resulting Rt estimates for a subset of the considered time period. The right column shows the mean absolute differences between point estimates obtained from the different approaches. In the bottom panel all considered aspects other than the estimation method (incl. data pre-processing) are aligned. Note that the two top rows we use wider y-axis limits to accommodate the Ilmenau estimates.</p
    corecore