2,067 research outputs found

    Використання волоконно-оптичних інтелектуальних структур діагностування технічного стану зовнішніх обводів літака

    Get PDF
     Article is devoted to the possibilities of usage of the fiber-optic intelligence structure for the diagnosis of the technical conditions of the outside of the airplane. Рассмотрена возможность использования волоконно-оптических интеллектуальных структур для диагностирования технического состояния внешних обводов самолета. Розглянуто можливість використання волоконно-оптичних інтелектуальних структур для діагностування технічного стану зовнішніх обводів літака

    Anisotropic dielectric function in polar nano-regions of relaxor ferroelectrics

    Get PDF
    The paper suggests to treat the infrared reflectivity spectra of single crystal perovskite relaxors as fine-grained ferroelectric ceramics: locally frozen polarization makes the dielectric function strongly anisotropic in the phonon frequency range and the random orientation of the polarization at nano-scopic scale requires to take into account the inhomogeneous depolarization field. Employing a simple effective medium approximation (Bruggeman symmetrical formula) to dielectric function describing the polar optic modes as damped harmonic oscillators turns out to be sufficient for reproducing all principal features of room temperature reflectivity of PMN. One of the reflectivity bands is identified as a geometrical resonance entirely related to the nanoscale polarization inhomogeneity. The approach provides a general guide for systematic determination of the polar mode frequencies split by the inhomogeneous polarization at nanometer scale.Comment: 5 pages, 2 figure

    Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy

    Full text link
    SrTiO3 ceramics are investigated by piezoresponse force microscopy. Piezoelectric contrast is observed on polished surfaces in both vertical and lateral regimes and depends on the grain orientation varying in both sign (polarization direction) and amplitude. The observed contrast is attested to the surface piezoelectricity due to flexoelectric effect (strain gradient-induced polarization) caused by the surface relaxation. The estimated flexoelectric coefficient is approximately one order of magnitude smaller as compared to those recently measured in SrTiO3 single crystals. The observed enhancement of piezoresponse signal at the grain boundaries is explained by the dipole moments associated with inhomogeneous distribution of oxygen vacancies

    Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap

    Full text link
    A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We discuss the alignment algorithm and an experiment-independent implementation including outlier rejection and treatment of weakly determined parameters. Using this implementation, the algorithm has been applied to data recorded with one CMS silicon tracker endcap. Results are compared to both photogrammetry measurements and data obtained from a dedicated hardware alignment system, and good agreement is observed.Comment: 11 pages, 8 figures. CMS NOTE-2010/00

    Relativistic Quantum Information in Detectors-Field Interactions

    Full text link
    We review Unruh-DeWitt detectors and other models of detector-field interaction in a relativistic quantum field theory setting as a tool for extracting detector-detector, field-field and detector-field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. We in particular highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behaviour.Comment: 21 pages, 3 figures. Prepared for the special focus issue on RQ

    The Highly Damped Quasinormal Modes of dd-dimensional Reissner-Nordstrom Black Holes in the Small Charge Limit

    Full text link
    We analyze in detail the highly damped quasinormal modes of dd-dimensional Reissner-Nordstro¨\ddot{\rm{o}}m black holes with small charge, paying particular attention to the large but finite damping limit in which the Schwarzschild results should be valid. In the infinite damping limit, we confirm using different methods the results obtained previously in the literature for higher dimensional Reissner-Nordstro¨\ddot{\rm{o}}m black holes. Using a combination of analytic and numerical techniques we also calculate the transition of the real part of the quasinormal mode frequency from the Reissner-Nordstro¨\ddot{\rm{o}}m value for very large damping to the Schwarzschild value of ln(3)Tbh\ln(3) T_{bh} for intermediate damping. The real frequency does not interpolate smoothly between the two values. Instead there is a critical value of the damping at which the topology of the Stokes/anti-Stokes lines change, and the real part of the quasinormal mode frequency dips to zero.Comment: 18 pages, 8 figure

    Fecal short-chain fatty acids at different time points after ceftriaxone administration in rats

    Get PDF
    Short-chain fatty acids (SCFAs) are major products of the microbial fermentation of dietary fiber in the colon. Recent studies suggest that these products of microbial metabolism in the gut act as signaling molecules, influence host energy homeostasis and play major immunological roles. In the present study, defined the long-term effects of ceftriaxone administration on the fecal SCFAs concentration in Wistar rats. Ceftriaxone (300 mg/kg, i.m.) was administered daily for 14 days. Rats were euthanized in 1, 15 and 56 days after ceftriaxone withdrawal. Caecal weight and fecal concentration of SCFAs by gas chromatography were measured. Ceftriaxone administration induced time-dependent rats’ caecal enlargement through accumulation of undigestable substances. In 1 day after ceftriaxone withdrawal, the concentrations of acetic, propionic, butyric acids and total SCFAs were decreased 2.9-, 13.8-, 8.5-, 4.8-fold (P < 0.05), respectively. Concentration of valeric, isovaleric and caproic acids was below the detectable level. That was accompanied by decreased 4.3-fold anaerobic index and increased the relative amount of acetic acid (P < 0.05). In 56 days, concentration of SCFAs was still below control value but higher than in 1 day (except propionic acid). Anaerobic index was lower 1.3-fold (P < 0.05) vs. control. Conclusion: antibiotic therapy induced long-term disturbance in colonic microbiota metabolic activity

    Onset and decay of the 1 + 1 Hawking–Unruh effect: what the derivative-coupling detector saw

    Get PDF
    We study an Unruh–DeWitt particle detector that is coupled to the proper time derivative of a real scalar field in 1 + 1 spacetime dimensions. Working within first-order perturbation theory, we cast the transition probability into a regulator- free form, and we show that the transition rate remains well defined in the limit of sharp switching. The detector is insensitive to the infrared ambiguity when the field becomes massless, and we verify explicitly the regularity of the massless limit for a static detector in Minkowski half-space. We then consider a massless field for two scenarios of interest for the Hawking–Unruh effect: an inertial detector in Minkowski spacetime with an exponentially receding mirror, and an inertial detector in (1 + 1)-dimensional Schwarzschild spacetime, in the Hartle–Hawking–Israel and Unruh vacua. In the mirror spacetime the transition rate traces the onset of an energy flux from the mirror, with the expected Planckian late time asymptotics. In the Schwarzschild spacetime the transition rate of a detector that falls in from infinity gradually loses thermality, diverging near the singularity proportionally to r−3 2

    Entanglement Dynamics between Inertial and Non-uniformly Accelerated Detectors

    Full text link
    We study the time-dependence of quantum entanglement between two Unruh-DeWitt detectors, one at rest in a Minkowski frame, the other non-uniformly accelerated in some specified way. The two detectors each couple to a scalar quantum field but do not interact directly. The primary challenge in problems involving non-uniformly accelerated detectors arises from the fact that an event horizon is absent and the Unruh temperature is ill-defined. By numerical calculation we demonstrate that the correlators of the accelerated detector in the weak coupling limit behaves like those of an oscillator in a bath of time-varying "temperature" proportional to the instantaneous proper acceleration of the detector, with oscillatory modifications due to non-adiabatic effects. We find that in this setup the acceleration of the detector in effect slows down the disentanglement process in Minkowski time due to the time dilation in that moving detectorComment: 20 pages, 15 figures; References added; More analysis given in Appendix C; Typos correcte
    corecore