35 research outputs found
A stochastic hybrid algorithm for multi-depot and multi-product routing problem with heterogeneous vehicles
Abstract. A mathematical model and heuristic method for solving multi-depot and multi-product vehicle routing problem (MD-MPVRP) with heterogeneous vehicles have been proposed in this article. Customers can order eclectic products and depots are supposed to deliver customers' orders before the lead time, using vehicles with diverse capacities, costs and velocities. Hence, mathematical model of multi-depot vehicle routing problem has been developed to mirror these conditions. This model is aimed at minimizing the serving distances which culminates in a reduction in prices and also serving time. As the problem is so complex and also solving would be too time-taking, a heuristic method has been offered. The heuristic method, at first, generates an initial solution through a three-step procedure which encompasses grouping, routing and vehicle selection, scheduling and packaging. Then it improves the solution by means of simulated annealing. We have considered the efficiency of offered algorithm by comparing its solutions with the optimum solutions and also during a case study. [V. Mahdavi Asl, S.A. Sadeghi, MR. Ostadali Makhmalbaf. A stochastic hybrid algorithm for multi-depot and multi-product routing problem with heterogeneous vehicles
Hydatidosis of the Pelvic Cavity: A Big Masquerade
We report and discuss a case of primary hydatidosis of the pelvic cavity in a woman who presented with severe weight loss and abdominal pain. This unusual presentation was initially considered as a tumor process until surgical exploration and microscopic studies confirmed the diagnosis. The gynecologists should be aware of possibility of primary hydatid cyst of the pelvic cavity and should be considered in the differential diagnosis of cystic pelvic masses, especially in areas where the disease is endemic
Changing the General Factor of Personality and the c-fos Gene Expression with Methylphenidate and Self-Regulation Therapy
[EN] A deepening in the biological nature of the general factor of personality (GFP) is suggested: the activation level of the stress system is here represented by the gene expression of c-fos. The results of a single case experimental design are reported. A model of four coupled differential equations that explains the human personality dynamics as a consequence of a single stimulant drug intake has been fitted to
psychological and biological experimental data. The stimulant-drug conditioning and its adaptation to the considered mathematical model is also studied for both kinds of measures. The dynamics of the cfos expression presents a similar pattern to the dynamics of the psychological measures of personality assessed by the GFP-FAS (Five-Adjective Scale of the General Factor of Personality) as a consequence of a single dose of stimulant drug (methylphenidate). The model predicts similar dynamic patterns for both psychological and biological measures. This study proves that describing mathematically the dynamics of the effects of a stimulant drug as well as the effects of a conditioning method on psychological or subjective variables and on gene expression is possible. It verifies the existence of biological mechanisms underlying the dynamics of the General Factor of Personality (GFP).[ES] Este artículo estudia la naturaleza dinámica del Factor General de Personalidad (FGP) en respuesta a
una dosis única de metilfenidato a partir de un diseño experimental de caso único con replicación. Para
medir el FGP, se emplean tanto medidas psicológicas (Escala de Cinco Adjetivos del Factor General
de Personalidad; ECA-FGP), como un marcador biológico (propuesto como substrato biológico del FGP)
que es la concentración del gen c-fos en los linfocitos de la sangre. También se estudia el
condicionamiento de los efectos subjetivo y biológico del metilfenidato con una técnica de sugestión y
condicionamiento, denominada terapia de auto-regulación. Por último, se propone un modelo matemático
de cuatro ecuaciones diferenciales acopladas que explican la dinámica del FGP como consecuencia
de una ingestión de droga estimulante y del condicionamiento de la droga, ajustadas a los datos
experimentales psicológicos y biológicos. Los resultados muestran un patrón dinámico similar para
ambas medidas psicológicas y biológicas del FGP en respuesta tanto a una dosis de metilfenidato
como al condicionamiento con terapia de auto-regulación.Así, se evidencia que es posible la formulación
matemática de la dinámica del FGP y sus correlatos biológicos, como el gen regulador c-fos, y su
condicionamiento mediante la terapia de auto-regulación.Micó Ruiz, JC.; Amigó Borrás, S.; Caselles Moncho, A. (2012). Changing the General Factor of Personality and the c-fos Gene Expression with Methylphenidate and Self-Regulation Therapy. Spanish Journal of Psychology. 15(2):850-867. doi:10.5209/rev_SJOP.2012.v15.n2.38896S850867152Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Gerasimov, M., Maynard, L., … Franceschi, D. (2001). Therapeutic Doses of Oral Methylphenidate Significantly Increase Extracellular Dopamine in the Human Brain. The Journal of Neuroscience, 21(2), RC121-RC121. doi:10.1523/jneurosci.21-02-j0001.2001Rushton, J. P., & Irwing, P. (2009). A General Factor of Personality (GFP) from the Multidimensional Personality Questionnaire. Personality and Individual Differences, 47(6), 571-576. doi:10.1016/j.paid.2009.05.011Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., & Gerfen, C. R. (1998). A Complex Program of Striatal Gene Expression Induced by Dopaminergic Stimulation. The Journal of Neuroscience, 18(14), 5301-5310. doi:10.1523/jneurosci.18-14-05301.1998Veselka, L., Schermer, J. A., Petrides, K. V., Cherkas, L. F., Spector, T. D., & Vernon, P. A. (2009). A General Factor of Personality: Evidence from the HEXACO Model and a Measure of Trait Emotional Intelligence. Twin Research and Human Genetics, 12(5), 420-424. doi:10.1375/twin.12.5.420Platt, J. (1995). C-fos expression in vivo in human lymphocytes in response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19(1), 65-74. doi:10.1016/0278-5846(94)00105-qSchweri, M. M., Skolnick, P., Rafferty, M. F., Rice, K. C., Janowsky, A. J., & Paul, S. M. (1985). [3H]Threo-(±)-Methylphenidate Binding to 3,4-Dihydroxyphenylethylamine Uptake Sites in Corpus Striatum: Correlation with the Stimulant Properties of Ritalinic Acid Esters. Journal of Neurochemistry, 45(4), 1062-1070. doi:10.1111/j.1471-4159.1985.tb05524.xCaselles, A., Micó, J. C., & Amigó, S. (2011). Dynamics of the General Factor of Personality in Response to a Single Dose of Caffeine. The Spanish journal of psychology, 14(2), 675-692. doi:10.5209/rev_sjop.2011.v14.n2.16Grossberg, S. (2000). The imbalanced brain: from normal behavior to schizophrenia. Biological Psychiatry, 48(2), 81-98. doi:10.1016/s0006-3223(00)00903-3Brandon, C. L., & Steiner, H. (2003). Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. European Journal of Neuroscience, 18(6), 1584-1592. doi:10.1046/j.1460-9568.2003.02892.xMorgan, J. I., & Curran, T. (1991). Stimulus-Transcription Coupling in the Nervous System: Involvement of the Inducible Proto-Oncogenes fos and jun. Annual Review of Neuroscience, 14(1), 421-451. doi:10.1146/annurev.ne.14.030191.002225LYNCH, J. J., STEIN, E. A., & FERTZIGER, A. P. (1976). AN ANALYSIS OF 70 YEARS OF MORPHINE CLASSICAL CONDITIONING. The Journal of Nervous and Mental Disease, 163(1), 47-58. doi:10.1097/00005053-197607000-00007Guzowski, J. F., Setlow, B., Wagner, E. K., & McGaugh, J. L. (2001). Experience-Dependent Gene Expression in the Rat Hippocampus after Spatial Learning: A Comparison of the Immediate-Early GenesArc, c-fos, andzif268. The Journal of Neuroscience, 21(14), 5089-5098. doi:10.1523/jneurosci.21-14-05089.2001Caselles, A., Micó, J. C., & Amigó, S. (2010). Cocaine addiction and personality: A mathematical model. British Journal of Mathematical and Statistical Psychology, 63(2), 449-480. doi:10.1348/000711009x470768Rushton, J. P., & Irwing, P. (2009). A general factor of personality in the Comrey Personality Scales, the Minnesota Multiphasic Personality Inventory-2, and the Multicultural Personality Questionnaire. Personality and Individual Differences, 46(4), 437-442. doi:10.1016/j.paid.2008.11.015O’BRIEN, C. P., CHILDRESS, A. R., McLELLAN, A. T., & EHRMAN, R. (1992). Classical Conditioning in Drug-Dependent Humans. Annals of the New York Academy of Sciences, 654(1 The Neurobiol), 400-415. doi:10.1111/j.1749-6632.1992.tb25984.xHurd, Y. L., & Ungerstedt, U. (1989). In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudate-putamen. European Journal of Pharmacology, 166(2), 251-260. doi:10.1016/0014-2999(89)90066-6Rushton, J. P., Bons, T. A., & Hur, Y.-M. (2008). The genetics and evolution of the general factor of personality. Journal of Research in Personality, 42(5), 1173-1185. doi:10.1016/j.jrp.2008.03.002Yano, M., & Steiner, H. (2004). Topography of Methylphenidate (Ritalin)-Induced Gene Regulation in the Striatum: Differential Effects on c-Fos, Substance P and Opioid Peptides. Neuropsychopharmacology, 30(5), 901-915. doi:10.1038/sj.npp.1300613Amigó, S., Caselles, A., & Micó, J. C. (2010). General Factor of Personality Questionnaire (GFPQ): Only one Factor to Understand Personality? The Spanish journal of psychology, 13(1), 5-17. doi:10.1017/s1138741600003644Erdle, S., Irwing, P., Rushton, J. P., & Park, J. (2010). The General Factor of Personality and its relation to Self-Esteem in 628,640 Internet respondents. Personality and Individual Differences, 48(3), 343-346. doi:10.1016/j.paid.2009.09.004Bogaert, A. F., & Philippe Rushton, J. (1989). Sexuality, delinquency and r/K reproductive strategies: Data from a Canadian University sample. Personality and Individual Differences, 10(10), 1071-1077. doi:10.1016/0191-8869(89)90259-6Figueredo, A. J., & Rushton, J. P. (2009). Evidence for Shared Genetic Dominance Between the General Factor of Personality, Mental and Physical Health, and Life History Traits. Twin Research and Human Genetics, 12(6), 555-563. doi:10.1375/twin.12.6.555Bertaina-Anglade, V., Tramu, G., & Destrade, C. (2000). Differential learning-stage dependent patterns of c-Fos protein expression in brain regions during the acquisition and memory consolidation of an operant task in mice. European Journal of Neuroscience, 12(10), 3803-3812. doi:10.1046/j.1460-9568.2000.00258.xLin, T. N., Te, J., Huang, H. C., Chi, S. I., & Hsu, C. Y. (1997). Prolongation and Enhancement of Postischemic c-
fos
Expression After Fasting. Stroke, 28(2), 412-418. doi:10.1161/01.str.28.2.412Kuczenski, R., & Segal, D. S. (2002). Effects of Methylphenidate on Extracellular Dopamine, Serotonin, and Norepinephrine: Comparison with Amphetamine. Journal of Neurochemistry, 68(5), 2032-2037. doi:10.1046/j.1471-4159.1997.68052032.xHarris, J. A. (1998). Using c-fos as a Neural Marker of Pain. Brain Research Bulletin, 45(1), 1-8. doi:10.1016/s0361-9230(97)00277-3Penner, M. R., McFadyen, M. P., Pinaud, R., Carrey, N., Robertson, H. A., & Brown, R. E. (2002). Age-related distribution of c-fos expression in the striatum of CD-1 mice after acute methylphenidate administration. Developmental Brain Research, 135(1-2), 71-77. doi:10.1016/s0165-3806(02)00308-5Musek, J. (2007). A general factor of personality: Evidence for the Big One in the five-factor model. Journal of Research in Personality, 41(6), 1213-1233. doi:10.1016/j.jrp.2007.02.003Veselka, L., Schermer, J. A., Petrides, K. V., & Vernon, P. A. (2009). Evidence for a Heritable General Factor of Personality in Two Studies. Twin Research and Human Genetics, 12(3), 254-260. doi:10.1375/twin.12.3.254Harlan, R. E., & Garcia, M. M. (1998). Drugs of abuse and immediate-early genes in the forebrain. Molecular Neurobiology, 16(3), 221-267. doi:10.1007/bf02741385LEVITE, M. (2006). Nerve-Driven Immunity: The Direct Effects of Neurotransmitters on T-Cell Function. Annals of the New York Academy of Sciences, 917(1), 307-321. doi:10.1111/j.1749-6632.2000.tb05397.xKogure, K., & Kato, H. (1993). Altered gene expression in cerebral ischemia. Stroke, 24(12), 2121-2127. doi:10.1161/01.str.24.12.2121Amigó, S., Caselles, A., & Micó, J. C. (2008). A dynamic extraversion model. The brain’s response to a single dose of a stimulant drug. British Journal of Mathematical and Statistical Psychology, 61(1), 211-231. doi:10.1348/000711007x185514Hess, U., Lynch, G., & Gall, C. (1995). Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. The Journal of Neuroscience, 15(12), 7796-7809. doi:10.1523/jneurosci.15-12-07796.1995Solomon, R. L., & Corbit, J. D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81(2), 119-145. doi:10.1037/h0036128Schermer, J. A., & Vernon, P. A. (2010). The correlation between general intelligence (g), a general factor of personality (GFP), and social desirability. Personality and Individual Differences, 48(2), 187-189. doi:10.1016/j.paid.2009.10.003Akins, P. T., Liu, P. K., & Hsu, C. Y. (1996). Immediate Early Gene Expression in Response to Cerebral Ischemia. Stroke, 27(9), 1682-1687. doi:10.1161/01.str.27.9.1682Butcher, S. P., Liptrot, J., & Aburthnott, G. W. (1991). Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neuroscience Letters, 122(2), 245-248. doi:10.1016/0304-3940(91)90869-uPompeiano, M., Cirelli, C., Arrighi, P., & Tononi, G. (1995). c-Fos expression during wakefulness and sleep. Neurophysiologie Clinique/Clinical Neurophysiology, 25(6), 329-341. doi:10.1016/0987-7053(96)84906-9Neisewander, J. L., Baker, D. A., Fuchs, R. A., Tran-Nguyen, L. T. L., Palmer, A., & Marshall, J. F. (2000). Fos Protein Expression and Cocaine-Seeking Behavior in Rats after Exposure to a Cocaine Self-Administration Environment. The Journal of Neuroscience, 20(2), 798-805. doi:10.1523/jneurosci.20-02-00798.2000Rushton, J. P., Bons, T. A., Ando, J., Hur, Y.-M., Irwing, P., Vernon, P. A., … Barbaranelli, C. (2009). A General Factor of Personality From Multitrait–Multimethod Data and Cross–National Twins. Twin Research and Human Genetics, 12(4), 356-365. doi:10.1375/twin.12.4.356Philippe Rushton, J., & Irwing, P. (2009). A General Factor of Personality in the Millon Clinical Multiaxial Inventory-III, the Dimensional Assessment of Personality Pathology, and the Personality Assessment Inventory. Journal of Research in Personality, 43(6), 1091-1095. doi:10.1016/j.jrp.2009.06.002Torres, G., & Horowitz, J. M. (1999). Drugs of Abuse and Brain Gene Expression. Psychosomatic Medicine, 61(5), 630-650. doi:10.1097/00006842-199909000-00007Brown, E., Robertson, G., & Fibiger, H. (1992). Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures. The Journal of Neuroscience, 12(10), 4112-4121. doi:10.1523/jneurosci.12-10-04112.1992Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G., & Ding, Y.-S. (1996). Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sciences, 58(12), PL231-PL239. doi:10.1016/0024-3205(96)00052-5Montag-Sallaz, M., Welzl, H., Kuhl, D., Montag, D., & Schachner, M. (1999). Novelty-induced increased expression of immediate-early genes c-fos and arg 3.1 in the mouse brain. Journal of Neurobiology, 38(2), 234-246. doi:10.1002/(sici)1097-4695(19990205)38:23.0.co;2-gØgard, C., Bratholm, P., Kristensen, L. Ø., Almdal, T., & Christensen, N. (2000). Lymphocyte glucocorticoid receptor mRNA correlates negatively to serum leptin in normal weight subjects. International Journal of Obesity, 24(7), 915-919. doi:10.1038/sj.ijo.0801252Rushton, J. P., & Irwing, P. (2009). A General Factor of Personality in 16 sets of the Big Five, the Guilford–Zimmerman Temperament Survey, the California Psychological Inventory, and the Temperament and Character Inventory. Personality and Individual Differences, 47(6), 558-564. doi:10.1016/j.paid.2009.05.009Henry, B., Sumner, B. E. H., Cruise, L. A., Slattery, D. A., Hill, D. R., & Shahid, M. (2004). Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs. Psychopharmacology, 171(3), 306-321. doi:10.1007/s00213-003-1579-7Chase, T. D., Brown, R. E., Carrey, N., & Wilkinson, M. (2003). Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. NeuroReport, 14(5), 769-772. doi:10.1097/00001756-200304150-00022Rushton, J. P., & Irwing, P. (2008). A General Factor of Personality (GFP) from two meta-analyses of the Big Five: and. Personality and Individual Differences, 45(7), 679-683. doi:10.1016/j.paid.2008.07.015FIGUEREDO, A., VASQUEZ, G., BRUMBACH, B., SCHNEIDER, S., SEFCEK, J., TAL, I., … JACOBS, W. (2006). Consilience and Life History Theory: From genes to brain to reproductive strategy. Developmental Review, 26(2), 243-275. doi:10.1016/j.dr.2006.02.002Stewart, J., de Wit, H., & Eikelboom, R. (1984). Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review, 91(2), 251-268. doi:10.1037/0033-295x.91.2.25
Self-Regulation Therapy to Reproduce Drug Effects: A Suggestion Technique to Change Personality and the DRD3 Gene Expression
This study proposes a strategy, based on self-regulation
therapy, to change personality and its biological substrate, the DRD3
gene expression. It has been demonstrated that acute doses of stimulating
drugs, like methylphenidate, are able to change personality
and the expression of certain genes in the short term. On the other
hand, self-regulation therapy has been proven to reproduce the effects
of drugs. Thus, it is feasible to hope that self-regulation therapy is
equally effective as methylphenidate in changing personality and the
gene expression. This is a preliminary study with a single-case experimental
design with replication in which 2 subjects participated. The
results and potential implications for research and psychotherapy are
discussed.Amigó Borrás, S.; Caselles Moncho, A.; Micó Ruiz, JC. (2013). Self-Regulation Therapy to Reproduce Drug Effects: A Suggestion Technique to Change Personality and the DRD3 Gene Expression. International Journal of Clinical and Experimental Hypnosis. 61(3):282-304. doi:10.1080/00207144.2013.784094S282304613Accili, D., Fishburn, C. S., Drago, J., Steiner, H., Lachowicz, J. E., Park, B. H., … Fuchs, S. (1996). A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proceedings of the National Academy of Sciences, 93(5), 1945-1949. doi:10.1073/pnas.93.5.1945Amigó, S., Caselles, A., & Micó, J. C. (2008). A dynamic extraversion model. The brain’s response to a single dose of a stimulant drug. British Journal of Mathematical and Statistical Psychology, 61(1), 211-231. doi:10.1348/000711007x185514Amigó, S., Caselles, A., & Micó, J. C. (2010). General Factor of Personality Questionnaire (GFPQ): Only one Factor to Understand Personality? The Spanish journal of psychology, 13(1), 5-17. doi:10.1017/s1138741600003644Barbanti, P., Bronzetti, E., Ricci, A., Cerbo, R., Fabbrini, G., Buzzi, M. G., … Lenzi, G. L. (1996). Increased density of dopamine D5 receptor in peripheral blood lymphocytes of migraineurs: a marker for migraine? Neuroscience Letters, 207(2), 73-76. doi:10.1016/0304-3940(96)12491-5Barbanti, P., Fabbrini, G., Ricci, A., Bruno, G., Cerbo, R., Bronzetti, E., … Luigi Lenzi, G. (2000). Reduced density of dopamine D2-like receptors on peripheral blood lymphocytes in Alzheimer’s disease. Mechanisms of Ageing and Development, 120(1-3), 65-75. doi:10.1016/s0047-6374(00)00183-4Barbanti, P., Fabbrini, G., Ricci, A., Pascali, M. P., Bronzetti, E., Amenta, F., … Cerbo, R. (2000). Migraine Patients Show an Increased Density of Dopamine D3 and D4 Receptors on Lymphocytes. Cephalalgia, 20(1), 15-19. doi:10.1046/j.1468-2982.2000.00001.xBarr, G. A., Sharpless, N. S., Cooper, S., Schiff, S. R., Paredes, W., & Bridger, W. H. (1983). Classical conditioning, decay and extinction of cocaine-induced hyperactivity and stereotypy. Life Sciences, 33(14), 1341-1351. doi:10.1016/0024-3205(83)90817-2Baumann, F. (1970). Hypnosis and the Adolescent Drug Abuser. American Journal of Clinical Hypnosis, 13(1), 17-21. doi:10.1080/00029157.1970.10402074Bayot, A., Capafons, A., & Cardeña, E. (1997). Emotional Self-Regulation Therapy: A New and Efficacious Treatment for Smoking. American Journal of Clinical Hypnosis, 40(2), 146-156. doi:10.1080/00029157.1997.10403418Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., & Gerfen, C. R. (1998). A Complex Program of Striatal Gene Expression Induced by Dopaminergic Stimulation. The Journal of Neuroscience, 18(14), 5301-5310. doi:10.1523/jneurosci.18-14-05301.1998Blachly, P. H. (1971). An «Electric Needle» for Aversive Conditioning of the Needle Ritual. International Journal of the Addictions, 6(2), 327-328. doi:10.3109/10826087109057791Brown, E., Robertson, G., & Fibiger, H. (1992). Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures. The Journal of Neuroscience, 12(10), 4112-4121. doi:10.1523/jneurosci.12-10-04112.1992Caine, S., & Koob, G. (1993). Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science, 260(5115), 1814-1816. doi:10.1126/science.8099761Capafons, A., & Amigoó, S. (1995). Emotional Self-Regulation Therapy for Smoking Reduction: Description and Initial Empirical Data. International Journal of Clinical and Experimental Hypnosis, 43(1), 7-19. doi:10.1080/00207149508409372Caselles, A., Micó, J. C., & Amigó, S. (2010). Cocaine addiction and personality: A mathematical model. British Journal of Mathematical and Statistical Psychology, 63(2), 449-480. doi:10.1348/000711009x470768Caselles, A., Micó, J. C., & Amigó, S. (2011). Dynamics of the General Factor of Personality in Response to a Single Dose of Caffeine. The Spanish journal of psychology, 14(2), 675-692. doi:10.5209/rev_sjop.2011.v14.n2.16Comings, D., Gade-Andavolu, R., Gonzalez, N., Wu, S., Muhleman, D., Blake, H., … MacMurray, J. (2001). A multivariate analysis of 59 candidate genes in personality traits: the temperament and character inventory. Clinical Genetics, 58(5), 375-385. doi:10.1034/j.1399-0004.2000.580508.xCzermak, C., Lehofer, M., Renger, H., Wagner, E. M., Lemonis, L., Rohrhofer, A., … Liebmann, P. M. (2004). Dopamine receptor D3 mRNA expression in human lymphocytes is negatively correlated with the personality trait of persistence. Journal of Neuroimmunology, 150(1-2), 145-149. doi:10.1016/j.jneuroim.2004.01.009Daly, S. A., & Waddington, J. L. (1993). Behavioural effects of the putative D-3 dopamine receptor agonist 7-OH-DPAT in relation to other «D-2-like» agonists. Neuropharmacology, 32(5), 509-510. doi:10.1016/0028-3908(93)90177-5Gilbert, D. G., & Hagen, R. L. (1985). Electrodermal responses to movie stressors: Nicotine × extraversion interactions. Personality and Individual Differences, 6(5), 573-578. doi:10.1016/0191-8869(85)90006-6Gilbert, D. B., Millar, J., & Cooper, S. J. (1995). The putative dopamine D3 agonist, 7-OH-DPAT, reduces dopamine release in the nucleus accumbens and electrical self-stimulation to the ventral tegmentum. Brain Research, 681(1-2), 1-7. doi:10.1016/0006-8993(95)00247-nHastings, A. (2006). An Extended Nondrug MDMA-Like Experience Evoked Through Posthypnotic Suggestion. Journal of Psychoactive Drugs, 38(3), 273-283. doi:10.1080/02791072.2006.10399853Ilani, T., Ben-Shachar, D., Strous, R. D., Mazor, M., Sheinkman, A., Kotler, M., & Fuchs, S. (2001). A peripheral marker for schizophrenia: Increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proceedings of the National Academy of Sciences, 98(2), 625-628. doi:10.1073/pnas.98.2.625Kollins, S. H., MacDonald, E. K., & Rush, C. R. (2001). Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacology Biochemistry and Behavior, 68(3), 611-627. doi:10.1016/s0091-3057(01)00464-6Lejeune, F., & Millan, M. J. (1995). Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. European Journal of Pharmacology, 275(3), R7-R9. doi:10.1016/0014-2999(95)00106-uLevant, B. (1998). Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Research, 800(2), 269-274. doi:10.1016/s0006-8993(98)00529-0LEVINE, D. G. (1974). «Needle Freaks»: Compulsive Self-Injection Drug Users. American Journal of Psychiatry, 131(3), 297-300. doi:10.1176/ajp.131.3.297LYNCH, J. J., STEIN, E. A., & FERTZIGER, A. P. (1976). AN ANALYSIS OF 70 YEARS OF MORPHINE CLASSICAL CONDITIONING. The Journal of Nervous and Mental Disease, 163(1), 47-58. doi:10.1097/00005053-197607000-00007Merchant, K. M., Figur, L. M., & Evans, D. L. (1996). Induction of c-fos mRNA in Rat Medial Prefrontal Cortex by Antipsychotic Drugs: Role of Dopamine D2 and D3 Receptors. Cerebral Cortex, 6(4), 561-570. doi:10.1093/cercor/6.4.561Muntaner, C., Cascella, N. G., Kumor, K. M., Nagoshi, C., Herning, R., & Jaffe, J. (1989). Placebo responses to cocaine administration in humans: effects of prior administrations and verbal instructions. Psychopharmacology, 99(2), 282-286. doi:10.1007/bf00442823Musek, J. (2007). A general factor of personality: Evidence for the Big One in the five-factor model. Journal of Research in Personality, 41(6), 1213-1233. doi:10.1016/j.jrp.2007.02.003Nagai, Y., Ueno, S., Saeki, Y., Soga, F., Hirano, M., & Yanagihara, T. (1996). Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology, 46(3), 791-795. doi:10.1212/wnl.46.3.791Neisewander, J. L., Baker, D. A., Fuchs, R. A., Tran-Nguyen, L. T. L., Palmer, A., & Marshall, J. F. (2000). Fos Protein Expression and Cocaine-Seeking Behavior in Rats after Exposure to a Cocaine Self-Administration Environment. The Journal of Neuroscience, 20(2), 798-805. doi:10.1523/jneurosci.20-02-00798.2000IMissbrandt, H., Ekman, A., Eriksson, E., & Heilig, M. (1995). Dopamine D3 receptor antisense influences dopamine synthesis in rat brain. NeuroReport, 6(3), 573-576. doi:10.1097/00001756-199502000-00041O’BRIEN, C. P., CHILDRESS, A. R., McLELLAN, A. T., & EHRMAN, R. (1992). Classical Conditioning in Drug-Dependent Humans. Annals of the New York Academy of Sciences, 654(1 The Neurobiol), 400-415. doi:10.1111/j.1749-6632.1992.tb25984.xO’Brien, C. P., Nace, E. P., Mintz, J., Meyers, A. L., & Ream, N. (1980). Follow-up of Vietnam veterans. I. relapse to drug use after Vietnam service. Drug and Alcohol Dependence, 5(5), 333-340. doi:10.1016/0376-8716(80)90159-3Pilla, M., Perachon, S., Sautel, F., Garrido, F., Mann, A., Wermuth, C. G., … Sokoloff, P. (1999). Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature, 400(6742), 371-375. doi:10.1038/22560Post, R. M., Lockfeld, A., Squillace, K. M., & Contel, N. R. (1981). Drug-environment interaction: Context dependency of cocaine-induced behavioral sensitization. Life Sciences, 28(7), 755-760. doi:10.1016/0024-3205(81)90157-0Ricci, A., Bronzetti, E., Mignini, F., Tayebati, S. K., Zaccheo, D., & Amenta, F. (1999). Dopamine D1-like receptor subtypes in human peripheral blood lymphocytes. Journal of Neuroimmunology, 96(2), 234-240. doi:10.1016/s0165-5728(99)00042-9Schiltz, C. A., Kelley, A. E., & Landry, C. F. (2005). Contextual cues associated with nicotine administration increasearcmRNA expression in corticolimbic areas of the rat brain. European Journal of Neuroscience, 21(6), 1703-1711. doi:10.1111/j.1460-9568.2005.04001.xSchutte, N. S., Malouff, J. M., Segrera, E., Wolf, A., & Rodgers, L. (2003). States reflecting the Big Five dimensions. Personality and Individual Differences, 34(4), 591-603. doi:10.1016/s0191-8869(02)00031-4Smith, B. D., Rockwell-Tischer, S., & Davidson, R. (1986). Extraversion and arousal: Effects of attentional conditions on electrodermal activity. Personality and Individual Differences, 7(3), 293-303. doi:10.1016/0191-8869(86)90004-8Stewart, J., de Wit, H., & Eikelboom, R. (1984). Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review, 91(2), 251-268. doi:10.1037/0033-295x.91.2.251Strange, P. G. (1993). New insights into dopamine receptors in the central nervous system. Neurochemistry International, 22(3), 223-236. doi:10.1016/0197-0186(93)90050-fSuzuki, M., Hurd, Y. L., Sokoloff, P., Schwartz, J.-C., & Sedvall, G. (1998). D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Research, 779(1-2), 58-74. doi:10.1016/s0006-8993(97)01078-0Takahashi, N., Nagai, Y., Ueno, S., Saeki, Y., & Yanagihara, T. (1992). Human peripheral blood lymphocytes express D5 dopamine receptor gene and transcribe the two pseudogenes. FEBS Letters, 314(1), 23-25. doi:10.1016/0014-5793(92)81452-rTorres, G., & Rivier, C. (1994). Induction of c-fos in rat brain by acute cocaine and fenfluramine exposure: a comparison study. Brain Research, 647(1), 1-9. doi:10.1016/0006-8993(94)91391-9Volkow, N. D., Wang, G.-J., Fowler, J. S., Gatley, S. J., Logan, J., Ding, Y.-S., … Pappas, N. (1998). Dopamine Transporter Occupancies in the Human Brain Induced by Therapeutic Doses of Oral Methylphenidate. American Journal of Psychiatry, 155(10), 1325-1331. doi:10.1176/ajp.155.10.1325Volkow, N. D., Wang, G.-J., Fowler, J. S., Telang, F., Maynard, L., Logan, J., … Swanson, J. M. (2004). Evidence That Methylphenidate Enhances the Saliency of a Mathematical Task by Increasing Dopamine in the Human Brain. American Journal of Psychiatry, 161(7), 1173-1180. doi:10.1176/appi.ajp.161.7.1173Vorel, S. R., Ashby, C. R., Paul, M., Liu, X., Hayes, R., Hagan, J. J., … Gardner, E. L. (2002). Dopamine D3Receptor Antagonism Inhibits Cocaine-Seeking and Cocaine-Enhanced Brain Reward in Rats. The Journal of Neuroscience, 22(21), 9595-9603. doi:10.1523/jneurosci.22-21-09595.2002Yano, M., & Steiner, H. (2004). Topography of Methylphenidate (Ritalin)-Induced Gene Regulation in the Striatum: Differential Effects on c-Fos, Substance P and Opioid Peptides. Neuropsychopharmacology, 30(5), 901-915. doi:10.1038/sj.npp.130061
Inflammatory Mediator Serotonin Receptor Gene (5-HTR3A) Expression Changes on Human Peripheral Blood Lymphocytes in Rheumatoid Arthritis
Novel Mutation Detection of Regulatory Molecule Dopamine Gene Receptors (D1–D5) Encoding Analysis on Human Peripheral Blood Lymphocytes in Schizophrenia Patients
The Role of Electron Microscopy for the Diagnosis of Childhood Glomerular Diseases
Objective: Optimum diagnosis of glomerulopathies requires light
microscopy, immunofluorescence and electron microcopy. In fact electron
microscopy has a confirmatory role in glomerular diseases. It provides
more information for patient management and can rule out other
diseases. The goal of the present study is analysis the necessity of
electron microscopy for the diagnosis of childhood glomerulopathies.
Methods: 134 cases of renal biopsy with some clinical data
retrospectively were reviewed. The contribution of electron microscopy
to the final diagnosis was graded as necessary - diagnosis could not be
reached without it, supportive - it increased the level of confidence
in the final diagnosis and noncontributory - the diagnosis don't need
electron microscopy for confirmation. Findings: The contribution of
electron microscopy to the final diagnosis was necessary in 51 cases
(38%), supportive in 40 cases (≈30%) and noncontributory in 43
cases (32%). Conclusion: In conclusion the results showed in about 68%
of childhood glomerulopathies the ultrastructural study was necessary
or supportive, so electron microscopy still remains an important tool
in diagnosis of childhood glomerulopathies
Curricular and Non-Curricular Factors Impacting Development of Leadership Competencies in Undergraduate Civil Engineering and Construction Students
The Role of Electron Microscopy for the Diagnosis of Childhood Glomerular Diseases
Objective: Optimum diagnosis of glomerulopathies requires light
microscopy, immunofluorescence and electron microcopy. In fact electron
microscopy has a confirmatory role in glomerular diseases. It provides
more information for patient management and can rule out other
diseases. The goal of the present study is analysis the necessity of
electron microscopy for the diagnosis of childhood glomerulopathies.
Methods: 134 cases of renal biopsy with some clinical data
retrospectively were reviewed. The contribution of electron microscopy
to the final diagnosis was graded as necessary - diagnosis could not be
reached without it, supportive - it increased the level of confidence
in the final diagnosis and noncontributory - the diagnosis don't need
electron microscopy for confirmation. Findings: The contribution of
electron microscopy to the final diagnosis was necessary in 51 cases
(38%), supportive in 40 cases (≈30%) and noncontributory in 43
cases (32%). Conclusion: In conclusion the results showed in about 68%
of childhood glomerulopathies the ultrastructural study was necessary
or supportive, so electron microscopy still remains an important tool
in diagnosis of childhood glomerulopathies
Uncommon Location of Idiopathic Granulomatous Mastitis: A Case Report
Background Idiopathic granulomatous mastitis (IGM) is a rare benign disease involving breast parenchyma mostly in periareolar region. Women of childbearing with recent history of pregnancy and lactation are more at risk of IGM. The common locations of IGM are retro areolar and periareolar of the breast, however involvement of axillary region has never been reported elsewhere.
Case presentation A 36-year-old female with history of two times pregnancy and lactation 8 months prior to presentation, referred with pain and swelling in the right axillary area. The past medical history and habitual history were negative and she did not use oral contraceptives or other medications. Local physical examination showed normal breasts with bilateral accessory breasts. A tender mass with the size of 4x6cm was palpable in the right axillary region accompanied by erythema and a few secretory fistulas without lymphadenopathy. Routine blood test came back negative and serum prolactin was normal. Ultra-sonography (US) demonstrated a soft tissue swelling, edema, and decreased echogenicity area in the right axillary region compatible with IGM. The patient started on prednisolone 50 mg per day, and the condition has not been improved for two months. To exclude other possible etiologies due to atypical location, the patient underwent a second US and core-needle biopsy which confirmed the diagnosis of axillary IGM. Prednisolone tapered off and a non-steroidal anti-inflammatory drug (NSAID) started. All the symptoms improved in a month and fully resolved in 3 months.
Conclusion Since IGM is not fully known yet, the presentation and the location can be variable. Considering IGM as a probable diagnosis in inflammatory presentation in the axillary region in patients with accessory breasts is suggested.</jats:p
