8 research outputs found

    Corrosion properties of structured sheet metals in salt environment

    Get PDF
    In the present paper the corrosion properties of structured sheet metals were investigated. The aim of this work is to determinate the influence of the structuring process on the corrosion resistance of sheet metals. For this purpose, these sheets were examined by accelerated tests in corrosion chamber. The investigation was carried out using salt spray test. The experiment was conducted for the low carbon steel DC04 in 5% NaCl environment. As a measure of corrosion damage, the weight loss was taken. The experiments point out that the steel weight loss is increasing appreciably with duration of the corrosive environment exposure. The results are presented for structured and smooth sheet metals as reference. A clear effect of the structuring process on the corrosion behaviour was observed. The results of the salt spray test show that structured sheet metals have a higher corrosion rate than smooth sheet metals. Structured sheets at the structure location “positive” have a lower corrosion rate than at the structure location “negative”. The difference of corrosion properties between structured and smooth sheet metals is becoming increasingly apparent with advancing corrosion process. The regression models were developed for the weight loss rate as function of exposure time. Furthermore, the thickness reduction of structured and smooth sheet metals was calculated

    Investigations on the thermal conditions during laser beam welding of high-strength steel 100Cr6

    No full text
    This study examines the thermal conditions during laser beam welding of 100Cr6 high-strength steel using a TruDisk5000 disc laser with a continuous adjustable power range of 100–5000 W. Two parameter sets, characterized by laser power and welding speeds, were analyzed by thermal-metallurgical FE simulations to determine their impact on the thermal conditions during welding. The results show a significant shift in heat coupling, with conduction transitioning to deep penetration welding. As a result of the high welding speeds and reduced energy input, extremely high heating rates up to 2∙104 K s−1 (set A) respectively 4∙105 K s−1 (set B) occur. Both welds thus concern a range of temperature state values for which conventional Time-Temperature-Austenitization (TTA) diagrams are currently not defined, requiring calibration of the material models through general assumptions. Also, the change in energy input and welding speed causes significantly steep temperature gradients with a slope of approximately 5∙103 K mm−1 and strong drops in the temperature rates, particularly in the heat affected zone. The temperature cycles also show very different cooling rates for the respective parameter sets, although in both cases they are well below a cooling time t8/5 of 1 s, so that the phase transformation always leads to the formation of martensite. Since the investigated parameters are known to cause a loss of technological strength and conditionally result in cold cracks, these results will be used for further detailed experimental and numerical investigation of microstructure, hydrogen distribution, and stress-strain development at different restraint conditions

    Wire Arc Additive Manufacturing of Aluminum Foams Using TiH<sub>2</sub>-Laced Welding Wires

    No full text
    Composite materials made from aluminum foam are increasingly used in aerospace and automotive industries due to their low density, high energy absorption capacity, and corrosion resistance. Additive manufacturing processes offer several advantages over conventional manufacturing methods, such as the ability to produce significantly more geometrically complex components without the need for expensive tooling. Direct Energy Deposition processes like Wire Arc Additive Manufacturing (WAAM) enable the additive production of near-net-shape components at high build rates. This paper presents a technology for producing aluminum foam structures using WAAM. This paper’s focus is on the development of welding wires that are mixed with a foaming agent (TiH2) and produce a foamed weld metal as well as their processing using MIG welding technology

    Numerical and experimental analysis of heat transfer in resistance spot welding process of aluminum alloy AA5182

    No full text
    In this work, a numerical model and experiments are used to investigate heat transfer processes during resistance spot welding process of aluminum. For this purpose, calibrated heat transfer conditions and thermal contact conductance are transferred from a previous work to a coupled thermal-electrical-mechanical finite element model. First, all domains of the numerical model are validated by an experimental study. The experimental setup includes the measurement of current, voltage drops, electrode force, electrode displacement, and temperatures while two sheets of aluminum alloy AA5182 are joined. Computational results show that most of the generated Joule heat (78%) is stored in the electrodes or transferred to cooling water until the end of weld time. Heat transfer by natural convection and thermal radiation is very small and can in general be neglected for complete process. Afterwards, the influence of electrode water-cooling on welding process is investigated numerically. The results indicate that the generation of Joule heat and thermal energy of the sheets during weld time is only slightly affected by electrode water-cooling. As a consequence, water-cooling conditions do not affect nugget formation. In contrast, electrode water-cooling highly influences cooling conditions during hold time

    A study of the heat transfer mechanism in resistance spot welding of aluminum alloys AA5182 and AA6014

    No full text
    This work investigates heat transfer mechanism of aluminum resistance spot welding process. The main target is to determine thermal contact conductance and heat transfer coefficients for natural convection and thermal radiation at ambient air and forced convection inside the water-cooled electrodes. For this purpose, the heat transfer of hot sheets in a welding gun for aluminum alloys AA5182 and AA6014 is analyzed experimentally and numerically. The transient temperature field is measured by several thermocouples in a simplified experimental setup. Subsequent thermal-mechanical coupled finite element simulations of the experiments were used to calibrate the heat transfer coefficients. The heat transfer coefficient for natural convection and thermal radiation to ambient air is 13 W m2 K and the heat transfer coefficient for forced convection of electrode water-cooling is 25,000 W m2 K. The results indicate that the thermal contact conductance can be assumed ideal for welding process. Additionally, the finite element model is validated by the measured and calculated dissipated heat due to forced convection. Finally, a sensitivity analysis is performed to compare the influence of maximum and minimum heat transfer coefficients of forced convection (water-cooling) on transient temperature field and dissipated heat of sample AA5182

    Structure Formation and Mechanical Properties of Wire Arc Additively Manufactured Al4043 (AlSi5) Components

    No full text
    In the current paper, the correlation between the physical size of additively built wire arc specimens and their structure and properties is studied. For the purpose of this work, two oval shaped specimens of different lengths were manufactured under the same technological conditions. The specimens have a length of 200 mm and 400 mm and will be referred to as L200 and L400. The microstructure of the samples was studied using X-ray diffraction analysis (XRD), optical microscopy, and scanning electron microscopy (SEM). The microhardness, yield strength (YS), and ultimate tensile strength (UTS) were determined and their correlation with the technological conditions of specimen build-up was clarified. The results of the carried out experiments indicated that the crystallographic structure of both specimens is similar. The scanning electron microscopy images show a higher concentration of irregularly shaped micro-pores formed near the edge of the αAl grains in the structure of the L400 specimen compared to the L200 one. An increase in the size of the αAl solid solution grains in the case of the L200 specimen towards its top section was noticed using optical microscopy. A slightly lower magnitude change was noticed concerning the L400 specimen. The increase in the size of the aluminum crystals was determined to be the increasing interpass temperature. Due to the much smaller thermal dissipation capacity of the smaller specimen, the interpass temperature of the same increased faster compared to the larger specimen. All of the above-mentioned factors led to a decrease in the microhardness of the specimens at higher stages of build-up. Since the specimens were deposited using similar layer deposition conditions, the resultant YS and UTS data are also highly comparable

    3D-printed structured catalysts for CO2 methanation reaction: Advancing of gyroid-based geometries

    No full text
    This work investigates the CO2 methanation rate of structured catalysts by tuning the geometry of 3D-printed metal Fluid Guiding Elements (FGEs) structures based on periodically variable pseudo-gyroid geometries. The enhanced performance showed by the structured catalytic systems is mostly associated with the capability of the FGEs substrate geometries for efficient heat usages. Thus, variations on the channels diameter resulted in ca. 25% greater CO2 conversions values at intermediate temperature ranges. The highest void fraction evidenced in the best performing catalyst (3D-1) favored the radial heat transfer and resulted in significantly enhanced catalytic activity, achieving close to equilibrium (75%) conversions at 400 \ub0C and 120 mL/min. For the 3D-1 catalyst, a mathematical model based on an experimental design was developed thus enabling the estimation of its behavior as a function of temperature, spatial velocity, hydrogen to carbon dioxide (H2/CO2) ratio, and inlet CO2 concentration. Its optimal operating conditions were established under 3 different scenarios: 1) no restrictions, 2) minimum H2:CO2 ratios, and 3) minimum temperatures and H2/CO2 ratio. For instance, for the lattest scenario, the best CO2 methanation conditions require operating at 431 \ub0C, 200 mL/min, H2/CO2 = 3 M ratio, and inlet CO2 concentration = 10 %
    corecore