63 research outputs found

    Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial

    Get PDF
    BACKGROUND: Fluid boluses are administered to septic shock patients with the purpose of increasing cardiac output as a means to restore tissue perfusion. Unfortunately, fluid therapy has a narrow therapeutic index, and therefore, several approaches to increase safety have been proposed. Fluid responsiveness (FR) assessment might predict which patients will effectively increase cardiac output after a fluid bolus (FR+), thus preventing potentially harmful fluid administration in non-fluid responsive (FR-) patients. However, there are scarce data on the impact of assessing FR on major outcomes. The recent ANDROMEDA-SHOCK trial included systematic per-protocol assessment of FR. We performed a post hoc analysis of the study dataset with the aim of exploring the relationship between FR status at baseline, attainment of specific targets, and clinically relevant outcomes. METHODS: ANDROMEDA-SHOCK compared the effect of peripheral perfusion- vs. lactate-targeted resuscitation on 28-day mortality. FR was assessed before each fluid bolus and periodically thereafter. FR+ and FR- subgroups, independent of the original randomization, were compared for fluid administration, achievement of resuscitation targets, vasoactive agents use, and major outcomes such as organ dysfunction and support, length of stay, and 28-day mortality. RESULTS: FR could be determined in 348 patients at baseline. Two hundred and forty-two patients (70%) were categorized as fluid responders

    Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion

    Get PDF
    Introduction: Although the prognostic value of persistent hyperlactatemia in septic shock is unequivocal, its physiological determinants are controversial. Particularly, the role of impaired hepatic clearance has been underestimated and is only considered relevant in patients with liver ischemia or cirrhosis. Our objectives were to establish whether endotoxemia impairs whole body net lactate clearance, and to explore a potential role for total liver hypoperfusion during the early phase of septic shock. Methods: After anesthesia, 12 sheep were subjected to hemodynamic/perfusion monitoring including hepatic and portal catheterization, and a hepatic ultrasound flow probe. After stabilization (point A), sheep were alternatively assigned to lipopolysaccharide (LPS) (5 mcg/kg bolus followed by 4 mcg/kg/h) or sham for a three-hour study period. After 60 minutes of shock, animals were fluid resuscitated to normalize mean arterial pressure. Repeated series of measurements were performed immediately after fluid resuscitation (point B), and one (point C) and two hours later (point D). Monitoring included systemic and regional hemodynamics, blood gases and lactate measurements, and ex-vivo hepatic mitochondrial respiration at point D. Parallel exogenous lactate and sorbitol clearances were performed at points B and D. Both groups included an intravenous bolus followed by serial blood sampling to draw a curve using the least squares method. Results: Significant hyperlactatemia was already present in LPS as compared to sham animals at point B (4.7 (3.1 to 6.7) versus 1.8 (1.5 to 3.7) mmol/L), increasing to 10.2 (7.8 to 12.3) mmol/L at point D. A significant increase in portal and hepatic lactate levels in LPS animals was also observed. No within-group difference in hepatic DO2, VO2 or O2 extraction, total hepatic blood flow (point D: 915 (773 to 1,046) versus 655 (593 to 1,175) ml/min), mitochondrial respiration, liver enzymes or sorbitol clearance was found. However, there was a highly significant decrease in lactate clearance in LPS animals (point B: 46 (30 to 180) versus 1,212 (743 to 2,116) ml/min, P <0.01; point D: 113 (65 to 322) versus 944 (363 to 1,235) ml/min, P <0.01). Conclusions: Endotoxemia induces an early and severe impairment in lactate clearance that is not related to total liver hypoperfusion

    A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study

    Get PDF
    __Background:__ Persistent hyperlactatemia is particularly difficult to interpret in septic shock. Besides hypoperfusion, adrenergic-driven lactate production and impaired lactate clearance are important contributors. However, clinical recognition of different sources of hyperlactatemia is unfortunately not a common practice and patients are treated with the same strategy despite the risk of over-resuscitation in some. Indeed, pursuing additional resuscitation in non-hypoperfusion-related cases might lead to the toxicity of fluid overload and vasoactive drugs. We hypothesized that two different clinical patterns can be recognized in septic shock patients through a multimodal perfusion monitoring. Hyperlactatemic patients with a hypoperfusion context probably represent a more severe acute circulatory dysfunction, and the absence of a hypoperfusion context is eventually associated with a good outcome. We performed a retrospective analysis of a database of septic shock patients with persistent hyperlactatemia after initial resuscitation. __Results:__ We defined hypoperfusion context by the presence of a ScvO2 < 70%, or a P(cv-a)CO2 ≥6 mmHg, or a CRT ≥4 s together with hyperlactatemia. Ninety patients were included, of whom seventy exhibited a hypoperfusion-related pattern and 20 did not. Although lactate values were comparable at baseline (4.8 ± 2.8 vs. 4.7 ± 3.7 mmol/L), patients with a hypoperfusion context exhibited a more severe circulatory dysfunction with higher vasopressor requirements, and a trend to longer mechanical ventilation days, ICU stay, and more rescue therapies. Only one of the 20 hyperlactatemic patients without a hypoperfusion context died (5%) compared to 11 of the 70 with hypoperfusion-related hyperlactatemia (16%). __Conclusions:__ Two different clinical patterns among hyperlactatemic septic shock patients may be identified according to hypoperfusion context. Patients with hyperlactatemia plus low ScvO2, or high P(cv-a)CO2, or high CRT values exhibited a more severe circulatory dysfunction. This provides a starting point to launch further prospective studies to confirm if this approach can lead to a more selective resuscitation strategy

    Diastolic shock index and clinical outcomes in patients with septic shock

    Get PDF
    Background: Loss of vascular tone is a key pathophysiological feature of septic shock. Combination of gradual diastolic hypotension and tachycardia could reflect more serious vasodilatory conditions. We sought to evaluate the relationships between heart rate (HR) to diastolic arterial pressure (DAP) ratios and clinical outcomes during early phases of septic shock. Methods: Diastolic shock index (DSI) was defined as the ratio between HR and DAP. DSI calculated just before starting vasopressors (Pre-VPs/DSI) in a preliminary cohort of 337 patients with septic shock (January 2015 to February 2017) and at vasopressor start (VPs/DSI) in 424 patients with septic shock included in a recent randomized controlled trial (ANDROMEDA-SHOCK; March 2017 to April 2018) was partitioned into five quantiles to estimate the relative risks (RR) of death with respect to the mean risk of each population (assumed to be 1). Matched HR and DAP subsamples were created to evaluate the effect of the individual components of the DSI on RRs. In addition, time-course of DSI and interaction between DSI and vasopressor dose (DSI*NE.dose) were compared between survivors and non-survivors from both populations, while ROC curves were used to identify variables predicting mortality. Finally, as exploratory observation, effect of early start of vasopressors was evaluated at each Pre-VPs/DSI quintile from the preliminary cohort. Results: Risk of death progressively increased at gradual increments of Pre-VPs/DSI or VPs/DSI (One-way ANOVA, p < 0.001). Progressive DAP decrease or HR increase was associated with higher mortality risks only when DSI concomitantly increased. Areas under the ROC curve for Pre-VPs/DSI, SOFA and initial lactate were similar, while mean arterial pressure and systolic shock index showed poor performances to predict mortality. Time-course of DSI and DSI*NE.dose was significantly higher in non-survivors from both populations (repeated-measures ANOVA, p < 0.001). Very early start of vasopressors exhibited an apparent benefit at higher Pre-VPs/DSI quintile. Conclusions: DSI at pre-vasopressor and vasopressor start points might represent a very early identifier of patients at high risk of death. Isolated DAP or HR values do not clearly identify such risk. Usefulness of DSI to trigger or to direct therapeutic interventions in early resuscitation of septic shock need to be addressed in future studies

    Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis

    Get PDF
    BACKGROUND: Optimal timing for the start of vasopressors (VP) in septic shock has not been widely studied since it is assumed that fluids must be administered in advance. We sought to evaluate whether a very early start of VP, even without completing the initial fluid loading, might impact clinical outcomes in septic shock. METHODS: A total of 337 patients with sepsis requiring VP support for at least 6 h were initially selected from a prospectively collected database in a 90-bed mixed-ICU during a 24-month period. They were classified into very-early (VE-VPs) or delayed vasopressor start (D-VPs) categories according to whether norepinephrine was initiated or not within/before the next hour of the first resuscitative fluid load. Then, VE-VPs (n = 93) patients were 1:1 propensity matched to D-VPs (n = 93) based on age; source of admission (emergency room, general wards, intensive care unit); chronic and acute comorbidities; and lactate, heart rate, systolic, and diastolic pressure at vasopressor start. A risk-adjusted Cox proportional hazard model was fitted to assess the association between VE-VPs and day 28 mortality. Finally, a sensitivity analysis was performed also including those patients requiring VP support for less than 6 h. RESULTS: Patients subjected to VE-VPs received significantly less resuscitation fluids at vasopressor starting (0[0-510] vs. 1500[650-2300] mL, p < 0.001) and during the first 8 h of resuscitation (1100[500-1900] vs. 2600[1600-3800] mL, p < 0.001), with no significant increase in acute renal failure and/or renal replacement therapy requirements. VE-VPs was related with significant lower net fluid balances 8 and 24 h after VPs. VE-VPs was also associated with a significant reduction in the risk of death compared to D-VPs (HR 0.31, CI95% 0.17-0.57, p < 0.001) at day 28. Such association was maintained after including patients receiving vasopressors for < 6 h. CONCLUSION: A very early start of vasopressor support seems to be safe, might limit the amount of fluids to resuscitate septic shock, and could lead to better clinical outcomes

    Effects of Fluids on the Macro- and Microcirculations.

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2018. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2018. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901

    Microcirculatory alterations: potential mechanisms and implications for therapy

    Get PDF
    Multiple experimental and human trials have shown that microcirculatory alterations are frequent in sepsis. In this review, we discuss the characteristics of these alterations, the various mechanisms potentially involved, and the implications for therapy. Sepsis-induced microvascular alterations are characterized by a decrease in capillary density with an increased number of stopped-flow and intermittent-flow capillaries, in close vicinity to well-perfused capillaries. Accordingly, the surface available for exchange is decreased but also is highly heterogeneous. Multiple mechanisms may contribute to these alterations, including endothelial dysfunction, impaired inter-cell communication, altered glycocalyx, adhesion and rolling of white blood cells and platelets, and altered red blood cell deformability. Given the heterogeneous nature of these alterations and the mechanisms potentially involved, classical hemodynamic interventions, such as fluids, red blood cell transfusions, vasopressors, and inotropic agents, have only a limited impact, and the microcirculatory changes often persist after resuscitation. Nevertheless, fluids seem to improve the microcirculation in the early phase of sepsis and dobutamine also can improve the microcirculation, although the magnitude of this effect varies considerably among patients. Finally, maintaining a sufficient perfusion pressure seems to positively influence the microcirculation; however, which mean arterial pressure levels should be targeted remains controversial. Some trials using vasodilating agents, especially nitroglycerin, showed promising initial results but they were challenged in other trials, so it is difficult to recommend the use of these agents in current practice. Other agents can markedly improve the microcirculation, including activated protein C and antithrombin, vitamin C, or steroids. In conclusion, microcirculatory alterations may play an important role in the development of sepsis-related organ dysfunction. At this stage, therapies to target microcirculation specifically are still being investigated

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account
    corecore