22 research outputs found

    Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial

    Get PDF
    BACKGROUND: Fluid boluses are administered to septic shock patients with the purpose of increasing cardiac output as a means to restore tissue perfusion. Unfortunately, fluid therapy has a narrow therapeutic index, and therefore, several approaches to increase safety have been proposed. Fluid responsiveness (FR) assessment might predict which patients will effectively increase cardiac output after a fluid bolus (FR+), thus preventing potentially harmful fluid administration in non-fluid responsive (FR-) patients. However, there are scarce data on the impact of assessing FR on major outcomes. The recent ANDROMEDA-SHOCK trial included systematic per-protocol assessment of FR. We performed a post hoc analysis of the study dataset with the aim of exploring the relationship between FR status at baseline, attainment of specific targets, and clinically relevant outcomes. METHODS: ANDROMEDA-SHOCK compared the effect of peripheral perfusion- vs. lactate-targeted resuscitation on 28-day mortality. FR was assessed before each fluid bolus and periodically thereafter. FR+ and FR- subgroups, independent of the original randomization, were compared for fluid administration, achievement of resuscitation targets, vasoactive agents use, and major outcomes such as organ dysfunction and support, length of stay, and 28-day mortality. RESULTS: FR could be determined in 348 patients at baseline. Two hundred and forty-two patients (70%) were categorized as fluid responders

    Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion

    Get PDF
    Introduction: Although the prognostic value of persistent hyperlactatemia in septic shock is unequivocal, its physiological determinants are controversial. Particularly, the role of impaired hepatic clearance has been underestimated and is only considered relevant in patients with liver ischemia or cirrhosis. Our objectives were to establish whether endotoxemia impairs whole body net lactate clearance, and to explore a potential role for total liver hypoperfusion during the early phase of septic shock. Methods: After anesthesia, 12 sheep were subjected to hemodynamic/perfusion monitoring including hepatic and portal catheterization, and a hepatic ultrasound flow probe. After stabilization (point A), sheep were alternatively assigned to lipopolysaccharide (LPS) (5 mcg/kg bolus followed by 4 mcg/kg/h) or sham for a three-hour study period. After 60 minutes of shock, animals were fluid resuscitated to normalize mean arterial pressure. Repeated series of measurements were performed immediately after fluid resuscitation (point B), and one (point C) and two hours later (point D). Monitoring included systemic and regional hemodynamics, blood gases and lactate measurements, and ex-vivo hepatic mitochondrial respiration at point D. Parallel exogenous lactate and sorbitol clearances were performed at points B and D. Both groups included an intravenous bolus followed by serial blood sampling to draw a curve using the least squares method. Results: Significant hyperlactatemia was already present in LPS as compared to sham animals at point B (4.7 (3.1 to 6.7) versus 1.8 (1.5 to 3.7) mmol/L), increasing to 10.2 (7.8 to 12.3) mmol/L at point D. A significant increase in portal and hepatic lactate levels in LPS animals was also observed. No within-group difference in hepatic DO2, VO2 or O2 extraction, total hepatic blood flow (point D: 915 (773 to 1,046) versus 655 (593 to 1,175) ml/min), mitochondrial respiration, liver enzymes or sorbitol clearance was found. However, there was a highly significant decrease in lactate clearance in LPS animals (point B: 46 (30 to 180) versus 1,212 (743 to 2,116) ml/min, P <0.01; point D: 113 (65 to 322) versus 944 (363 to 1,235) ml/min, P <0.01). Conclusions: Endotoxemia induces an early and severe impairment in lactate clearance that is not related to total liver hypoperfusion

    A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study

    Get PDF
    __Background:__ Persistent hyperlactatemia is particularly difficult to interpret in septic shock. Besides hypoperfusion, adrenergic-driven lactate production and impaired lactate clearance are important contributors. However, clinical recognition of different sources of hyperlactatemia is unfortunately not a common practice and patients are treated with the same strategy despite the risk of over-resuscitation in some. Indeed, pursuing additional resuscitation in non-hypoperfusion-related cases might lead to the toxicity of fluid overload and vasoactive drugs. We hypothesized that two different clinical patterns can be recognized in septic shock patients through a multimodal perfusion monitoring. Hyperlactatemic patients with a hypoperfusion context probably represent a more severe acute circulatory dysfunction, and the absence of a hypoperfusion context is eventually associated with a good outcome. We performed a retrospective analysis of a database of septic shock patients with persistent hyperlactatemia after initial resuscitation. __Results:__ We defined hypoperfusion context by the presence of a ScvO2 < 70%, or a P(cv-a)CO2 ≥6 mmHg, or a CRT ≥4 s together with hyperlactatemia. Ninety patients were included, of whom seventy exhibited a hypoperfusion-related pattern and 20 did not. Although lactate values were comparable at baseline (4.8 ± 2.8 vs. 4.7 ± 3.7 mmol/L), patients with a hypoperfusion context exhibited a more severe circulatory dysfunction with higher vasopressor requirements, and a trend to longer mechanical ventilation days, ICU stay, and more rescue therapies. Only one of the 20 hyperlactatemic patients without a hypoperfusion context died (5%) compared to 11 of the 70 with hypoperfusion-related hyperlactatemia (16%). __Conclusions:__ Two different clinical patterns among hyperlactatemic septic shock patients may be identified according to hypoperfusion context. Patients with hyperlactatemia plus low ScvO2, or high P(cv-a)CO2, or high CRT values exhibited a more severe circulatory dysfunction. This provides a starting point to launch further prospective studies to confirm if this approach can lead to a more selective resuscitation strategy

    Diastolic shock index and clinical outcomes in patients with septic shock

    Get PDF
    Background: Loss of vascular tone is a key pathophysiological feature of septic shock. Combination of gradual diastolic hypotension and tachycardia could reflect more serious vasodilatory conditions. We sought to evaluate the relationships between heart rate (HR) to diastolic arterial pressure (DAP) ratios and clinical outcomes during early phases of septic shock. Methods: Diastolic shock index (DSI) was defined as the ratio between HR and DAP. DSI calculated just before starting vasopressors (Pre-VPs/DSI) in a preliminary cohort of 337 patients with septic shock (January 2015 to February 2017) and at vasopressor start (VPs/DSI) in 424 patients with septic shock included in a recent randomized controlled trial (ANDROMEDA-SHOCK; March 2017 to April 2018) was partitioned into five quantiles to estimate the relative risks (RR) of death with respect to the mean risk of each population (assumed to be 1). Matched HR and DAP subsamples were created to evaluate the effect of the individual components of the DSI on RRs. In addition, time-course of DSI and interaction between DSI and vasopressor dose (DSI*NE.dose) were compared between survivors and non-survivors from both populations, while ROC curves were used to identify variables predicting mortality. Finally, as exploratory observation, effect of early start of vasopressors was evaluated at each Pre-VPs/DSI quintile from the preliminary cohort. Results: Risk of death progressively increased at gradual increments of Pre-VPs/DSI or VPs/DSI (One-way ANOVA, p < 0.001). Progressive DAP decrease or HR increase was associated with higher mortality risks only when DSI concomitantly increased. Areas under the ROC curve for Pre-VPs/DSI, SOFA and initial lactate were similar, while mean arterial pressure and systolic shock index showed poor performances to predict mortality. Time-course of DSI and DSI*NE.dose was significantly higher in non-survivors from both populations (repeated-measures ANOVA, p < 0.001). Very early start of vasopressors exhibited an apparent benefit at higher Pre-VPs/DSI quintile. Conclusions: DSI at pre-vasopressor and vasopressor start points might represent a very early identifier of patients at high risk of death. Isolated DAP or HR values do not clearly identify such risk. Usefulness of DSI to trigger or to direct therapeutic interventions in early resuscitation of septic shock need to be addressed in future studies

    Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis

    Get PDF
    BACKGROUND: Optimal timing for the start of vasopressors (VP) in septic shock has not been widely studied since it is assumed that fluids must be administered in advance. We sought to evaluate whether a very early start of VP, even without completing the initial fluid loading, might impact clinical outcomes in septic shock. METHODS: A total of 337 patients with sepsis requiring VP support for at least 6 h were initially selected from a prospectively collected database in a 90-bed mixed-ICU during a 24-month period. They were classified into very-early (VE-VPs) or delayed vasopressor start (D-VPs) categories according to whether norepinephrine was initiated or not within/before the next hour of the first resuscitative fluid load. Then, VE-VPs (n = 93) patients were 1:1 propensity matched to D-VPs (n = 93) based on age; source of admission (emergency room, general wards, intensive care unit); chronic and acute comorbidities; and lactate, heart rate, systolic, and diastolic pressure at vasopressor start. A risk-adjusted Cox proportional hazard model was fitted to assess the association between VE-VPs and day 28 mortality. Finally, a sensitivity analysis was performed also including those patients requiring VP support for less than 6 h. RESULTS: Patients subjected to VE-VPs received significantly less resuscitation fluids at vasopressor starting (0[0-510] vs. 1500[650-2300] mL, p < 0.001) and during the first 8 h of resuscitation (1100[500-1900] vs. 2600[1600-3800] mL, p < 0.001), with no significant increase in acute renal failure and/or renal replacement therapy requirements. VE-VPs was related with significant lower net fluid balances 8 and 24 h after VPs. VE-VPs was also associated with a significant reduction in the risk of death compared to D-VPs (HR 0.31, CI95% 0.17-0.57, p < 0.001) at day 28. Such association was maintained after including patients receiving vasopressors for < 6 h. CONCLUSION: A very early start of vasopressor support seems to be safe, might limit the amount of fluids to resuscitate septic shock, and could lead to better clinical outcomes

    The practice of intensive care in Latin America: a survey of academic intensivists

    Get PDF
    Background: Intensive care medicine is a relatively young discipline that has rapidly grown into a full-fledged medical subspecialty. Intensivists are responsible for managing an ever-increasing number of patients with complex, lifethreatening diseases. Several factors may influence their performance, including age, training, experience, workload, and socioeconomic context. The aim of this study was to examine individual- and work-related aspects of the Latin American intensivist workforce, mainly with academic appointments, which might influence the quality of care provided. In consequence, we conducted a cross-sectional study of intensivists at public and private academic and nonacademic Latin American intensive care units (ICUs) through a web-based electronic survey submitted by email. Questions about personal aspects, work-related topics, and general clinical workflow were incorporated. Results: Our study comprised 735 survey respondents (53% return rate) with the following country-specific breakdown: Brazil (29%); Argentina (19%); Chile (17%); Uruguay (12%); Ecuador (9%); Mexico (7%); Colombia (5%); and Bolivia, Peru, Guatemala, and Paraguay combined (2%). Latin American intensivists were predominantly male (68%) young adults (median age, 40 [IQR, 35–48] years) with a median clinical ICU experience of 10 (IQR, 5–20) years. The median weekly workload was 60 (IQR, 47–70) h. ICU formal training was between 2 and 4 years. Only 63% of academic ICUs performed multidisciplinary rounds. Most intensivists (85%) reported adequate conditions to manage patients with septic shock in their units. Unsatisfactory conditions were attributed to insufficient technology (11%), laboratory support (5%), imaging resources (5%), and drug shortages (5%). Seventy percent of intensivists participated in research, and 54% read scientific studies regularly, whereas 32% read no more than one scientific study per month. Research grants and pharmaceutical sponsorship are unusual funding sources in Latin America. Although Latin American intensivists are mostly unsatisfied with their income (81%), only a minority (27%) considered changing to another specialty before retirement. Conclusions: Latin American intensivists constitute a predominantly young adult workforce, mostly formally trained, have a high workload, and most are interested in research. They are under important limitations owing to resource constraints and overt dissatisfaction. Latin America may be representative of other world areas with similar challenges for intensivists. Specific initiatives aimed at addressing these situations need to be devised to improve the quality of critical care delivery in Latin America.Facultad de Ciencias Médica

    Defining Septic Shock

    No full text
    Pontificia Univ Catolica Chile, Dept Mecicina Intens, Marcoleta 367, Santiago 7500000, Region Metropol, ChileUniv Fed Sao Paulo, Discipline Anesthesiol Pain & Intens Care, Sao Paulo, BrazilFdn Valle Lili Univ ICESI, Intens Care Med Dept, Cali, ColombiaUniv Fed Sao Paulo, Discipline Anesthesiol Pain & Intens Care, Sao Paulo, BrazilWeb of Scienc

    Evidence for a personalized early start of norepinephrine in septic shock

    No full text
    Abstract During septic shock, vasopressor infusion is usually started only after having corrected the hypovolaemic component of circulatory failure, even in the most severe patients. However, earlier administration of norepinephrine, simultaneously with fluid resuscitation, should be considered in some cases. Duration and depth of hypotension strongly worsen outcomes in septic shock patients. However, the response of arterial pressure to volume expansion is inconstant, delayed, and transitory. In the case of profound, life-threatening hypotension, relying only on fluids to restore blood pressure may unduly prolong hypotension and organ hypoperfusion. Conversely, norepinephrine rapidly increases and better stabilizes arterial pressure. By binding venous adrenergic receptors, it transforms part of the unstressed blood volume into stressed blood volume. It increases the mean systemic filling pressure and increases the fluid-induced increase in mean systemic filling pressure, as observed in septic shock patients. This may improve end-organ perfusion, as shown by some animal studies. Two observational studies comparing early vs. later administration of norepinephrine in septic shock patients using a propensity score showed that early administration reduced the administered fluid volume and day-28 mortality. Conversely, in another propensity score-based study, norepinephrine administration within the first hour following shock diagnosis increased day-28 mortality. The only randomized controlled study that compared the early administration of norepinephrine alone to a placebo showed that the early continuous administration of norepinephrine at a fixed dose of 0.05 µg/kg/min, with norepinephrine added in open label, showed that shock control was achieved more often than in the placebo group. The choice of starting norepinephrine administration early should be adapted to the patient’s condition. Logically, it should first be addressed to patients with profound hypotension, when the arterial tone is very low, as suggested by a low diastolic blood pressure (e.g. ≤ 40 mmHg), or by a high diastolic shock index (heart rate/diastolic blood pressure) (e.g. ≥ 3). Early administration of norepinephrine should also be considered in patients in whom fluid accumulation is likely to occur or in whom fluid accumulation would be particularly deleterious (in case of acute respiratory distress syndrome or intra-abdominal hypertension for example)
    corecore