3,640 research outputs found

    VLT X-shooter spectroscopy of the nearest brown dwarf binary

    Full text link
    The aim of the project is to characterise both components of the nearest brown dwarf sytem to the Sun, WISE J104915.57-531906.1 (=Luhman16AB) at optical and near-infrared wavelengths. We obtained high signal-to-noise intermediate-resolution (R~6000-11000) optical (600-1000 nm) and near-infrared (1000-2480nm) spectra of each component of Luhman16AB, the closest brown dwarf binary to the Sun, with the X-Shooter instrument on the Very Large Telescope. We classify the primary and secondary of the Luhman16 system as L6-L7.5 and T0+/-1, respectively, in agreement with previous measurements published in the literature. We present measurements of the lithium pseudo-equivalent widths, which appears of similar strength on both components (8.2+/-1.0 Angstroms and 8.4+/-1.5 Angstroms for the L and T components, respectively). The presence of lithium (Lithium 7) in both components imply masses below 0.06 Msun while comparison with models suggests lower limits of 0.04 Msun. The detection of lithium in the T component is the first of its kind. Similarly, we assess the strength of other alkali lines (e.g. pseudo-equivalent widths of 6-7 Angstroms for RbI and 4-7 Angstroms for CsI) present in the optical and near-infrared regions and compare with estimates for L and T dwarfs. We also derive effective temperatures and luminosities of each component of the binary: -4.66+/-0.08 dex and 1305(+180)(-135) for the L dwarf and -4.68+/-0.13 dex and 1320(+185)(-135) for the T dwarf, respectively. Using our radial velocity determinations, the binary does not appear to belong to any of the well-known moving group. Our preliminary theoretical analysis of the optical and J-band spectra indicates that the L- and T-type spectra can be reproduced with a single temperature and gravity but different relative chemical abundances which impact strongly the spectral energy distribution of L/T transition objects.Comment: 12 pages, 9 figure, 3 tables, accepted to A&

    Bridging the ARCH model for finance and nonextensive entropy

    Full text link
    Engle's ARCH algorithm is a generator of stochastic time series for financial returns (and similar quantities) characterized by a time-dependent variance. It involves a memory parameter bb (b=0b=0 corresponds to {\it no memory}), and the noise is currently chosen to be Gaussian. We assume here a generalized noise, namely qnq_n-Gaussian, characterized by an index qnRq_{n} \in {\cal R} (qn=1q_{n}=1 recovers the Gaussian case, and qn>1q_n>1 corresponds to tailed distributions). We then match the second and fourth momenta of the ARCH return distribution with those associated with the qq-Gaussian distribution obtained through optimization of the entropy S_{q}=\frac{% 1-\sum_{i} {p_i}^q}{q-1}, basis of nonextensive statistical mechanics. The outcome is an {\it analytic} distribution for the returns, where an unique qqnq\ge q_n corresponds to each pair (b,qn)(b,q_n) (q=qnq=q_n if b=0 b=0). This distribution is compared with numerical results and appears to be remarkably precise. This system constitutes a simple, low-dimensional, dynamical mechanism which accommodates well within the current nonextensive framework.Comment: 4 pages, 5 figures.Figure 4 fixe

    Dielectric screening in extended systems using the self-consistent Sternheimer equation and localized basis sets

    Full text link
    We develop a first-principles computational method for investigating the dielectric screening in extended systems using the self-consistent Sternheimer equation and localized non-orthogonal basis sets. Our approach does not require the explicit calculation of unoccupied electronic states, only uses two-center integrals, and has a theoretical scaling of order O(N^3). We demonstrate this method by comparing our calculations for silicon, germanium, diamond, and LiCl with reference planewaves calculations. We show that accuracy comparable to planewaves calculations can be achieved via a systematic optimization of the basis set.Comment: 6 pages, 3 figure

    The influence of electron collisions on non-LTE Li line formation in stellar atmospheres

    Full text link
    The influence of the uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the electron collision data used in previous non-LTE calculations and compare them to recent calculations that use convergent close-coupling (CCC) techniques and to our own calculations using the R-matrix with pseudostates (RMPS) method. We find excellent agreement between rate coefficients from the CCC and RMPS calculations, and reasonable agreement between these data and the semi-empirical data used in non-LTE calculations up to now. The results of non-LTE calculations using the old and new data sets are compared and only small differences found: about 0.01 dex (~ 2%) or less in the abundance corrections. We therefore conclude that the influence on non-LTE calculations of uncertainties in the electron collision data is negligible. Indeed, together with the collision data for the charge exchange process Li(3s) + H Li^+ + H^- now available, and barring the existence of an unknown important collisional process, the collisional data in general is not a source of significant uncertainty in non-LTE Li line formation calculations.Comment: 8 pages, accepted by Astronomy and Astrophysics; Replaced with minor corrections following proof

    Near-infrared photometry of WISE J085510.74-071442.5

    Get PDF
    Indexación: Web of ScienceAims. We aim at obtaining near-infrared photometry and deriving the mass, age, temperature, and surface gravity of WISE J085510.74 071442.5 (J0855 0714), which is the coolest object beyond the solar system currently known. Methods. We used publicly available data from the archives of the Hubble Space Telescope (HST) and the Very Large Telescope (VLT) to determine the emission of this source at 1.153 mu m (F110W) and 1.575 mu m (CH4-o ff). J0855 0714 was detected at both wavelengths with a signal-to-noise ratio of approximate to 10 (F110W) and approximate to 4 (CH4-off) at the peak of the corresponding point-spread-functions. Results. This is the first detection of J0855 0714 in the H-band wavelengths. We measured 26.31 +/- 0.10 and 23.22 +/- 0.35 mag in F110W and CH4-o ff (Vega system). J0855 0714 remains unresolved in the HST images that have a spatial resolution of 0.22 0 0. Companions at separations of 0.5 AU (similar mass and brightness) and at similar to 1 AU approximate to 1 mag fainter in the F110W filter) are discarded. By combining the new data with published photometry, including non-detections, we build the spectral energy distribution of J0855 0714 from 0.89 through 22.09 mu m, and contrast it against current solar-metallicity models of planetary atmospheres. We determine that the best spectral fit yields a temperature of 225 250 K, a bolometric luminosity of log L/L-circle dot = 8 : 57, and a high surface gravity of log g = 5 : 0 (cm s(2)), which suggests an old age although a gravity this high is not fully compatible with evolutionary models. After comparing our data with the cooling theory for brown dwarfs and planets, we infer a mass in the interval 2 10 MJup for ages of 1 12 Gyr and high atmospheric gravities of log g greater than or similar to 3.5 (cm s(2)). If it had the age of the Sun, J0855 0714 would be a approximate to 5-M-Jup free-floating planetary-mass object. Conclusions. J0855 0714 meets the mass values previously determined for free-floating planetary-mass objects discovered in starforming regions and young stellar clusters. Based on extrapolations of the substellar mass functions of young clusters to the field, as many J0855 0714-like objects as M5-L2 stars may be expected to populate the solar neighborhood.http://www.aanda.org/articles/aa/pdf/2016/08/aa28662-16.pd

    2MASS J154043.42-510135.7: a new addition to the 5 pc population

    Full text link
    The aim of the project is to find the stars nearest to the Sun and to contribute to the completion of the stellar and substellar census of the solar neighbourhood. We identified a new late-M dwarf within 5 pc, looking for high proper motion sources in the 2MASS-WISE cross-match. We collected astrometric and photometric data available from public large-scale surveys. We complemented this information with low-resolution optical and near-infrared spectroscopy with instrumentation on the ESO NTT to confirm the nature of our candidate. We also present a high-quality medium-resolution VLT/X-shooter spectrum covering the 400 to 2500 nm wavelength range. We classify this new neighbour as an M7.0±\pm0.5 dwarf using spectral templates from the Sloan Digital Sky Survey and spectral indices. Lithium absorption at 670.8 nm is not detected in the X-shooter spectrum, indicating that the M7 dwarf is older than 600 Myr and more massive than 0.06 M_{\odot}. We also derive a trigonometric distance of 4.4 pc, in agreement with the spectroscopic distance estimate, making 2MASS\,J154043.42-510135.7 the nearest M7 dwarf to the Sun. This trigonometric distance is somewhat closer than the \sim6 pc distance reported by the ALLWISE team, who independently identified this object recently. This discovery represents an increase of 25\% in the number of M7--M8 dwarfs already known at distances closer than 8\,pc from our Sun. We derive a density of ρ\rho\,=\,1.9±\pm0.9×\times103^{-3}\,pc3^{-3} for M7 dwarfs in the 8 pc volume, a value similar to those quoted in the literature. This new ultracool dwarf is among the 50 nearest systems to the Sun, demonstrating that our current knowledge of the stellar census within the 5 pc sample remains incomplete. 2M1540 represents a unique opportunity to search for extrasolar planets around ultracool dwarfs due to its proximity and brightness.Comment: 8 pages, 5 figures. Acepted in Astronomy & Astrophysics (15/05/2005

    Membership and Multiplicity among Very Low-Mass Stars and Brown Dwarfs in the Pleiades Cluster

    Get PDF
    We present near-infrared photometry and optical spectroscopy of very low-mass stars and brown dwarf candidates in the Pleiades open cluster. The membership status of these objects is assessed. Eight objects out of 45 appear to be non-members. A search for companions among 34 very low-mass Pleiades members (M\le0.09 M_\odot) in high-spatial resolution images obtained with the Hubble Space Telescope and the adaptive optics system of the Canada-France-Hawaii telescope produced no resolved binaries with separations larger than 0.2 arcsec (a ~ 27 AU; P ~ 444 years). Nevertheless, we find evidence for a binary sequence in the color-magnitude diagrams, in agreement with the results of Steele & Jameson (1995) for higher mass stars. We compare the multiplicity statistics of the Pleiades very low-mass stars and brown dwarfs with that of G and K-type main sequence stars in the solar neighborhood (Duquennoy & Mayor 1991). We find that there is some evidence for a deficiency of wide binary systems (separation >27 AU) among the Pleiades very low-mass members. We briefly discuss how this result can fit with current scenarios of brown dwarf formation. We correct the Pleiades substellar mass function for the contamination of cluster non-members found in this work. We find a contamination level of 33% among the brown dwarf candidates identified by Bouvier et al. (1998). Assuming a power law IMF across the substellar boundary, we find a slope dN/dM ~ M^{-0.53}, implying that the number of objects per mass bin is still rising but the contribution to the total mass of the cluster is declining in the brown dwarf regime.Comment: to be published in The Astrophysical Journa

    Primeval very low-mass stars and brown dwarfs - VI. Population properties of metal-poor degenerate brown dwarfs

    Get PDF
    © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy, and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near infrared spectra obtained with the Very Large Telescope and the Gran Telescopio Canarias. One of these new T dwarfs is mildly metal-poor with slightly suppressed KK-band flux. We presented a new X-shooter spectrum of a known benchmark sdT5.5 subdwarf, HIP 73786B. To better understand observational properties of brown dwarfs, we discussed transition zones (mass ranges) with low-rate hydrogen, lithium, and deuterium burning in brown dwarf population. The hydrogen burning transition zone is also the substellar transition zone that separates very low-mass stars, transitional, and degenerate brown dwarfs. Transitional brown dwarfs have been discussed in previous works of the Primeval series. Degenerate brown dwarfs without hydrogen fusion are the majority of brown dwarfs. Metal-poor degenerate brown dwarfs of the Galactic thick disc and halo have become T5+ subdwarfs. We selected 41 T5+ subdwarfs from the literature by their suppressed KK-band flux. We studied the spectral-type - colour correlations, spectral-type - absolute magnitude correlations, colour-colour plots, and HR diagrams of T5+ subdwarfs, in comparison to these of L-T dwarfs and L subdwarfs. We discussed the T5+ subdwarf discovery capability of deep sky surveys in the 2020s.Peer reviewe

    Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    Get PDF
    We demonstrate an electrically controlled high-spin (S=5/2) to low-spin (S=1/2) transition in a three-terminal device incorporating a single Mn2+ ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model.Comment: Will appear soon in Nanoletter

    Temporal changes of the flare activity of Proxima Cen

    Full text link
    We study temporal variations of the emission lines of Halpha, Hepsilon, H and K Ca II, D1 and D2 Na I, 4026 and 5876 A He I in the HARPS spectra of Proxima Centauri across an extended time of 13.2 years, from May 27, 2004, to September 30, 2017. Aims. We analyse the common behaviour and differences in the intensities and profiles of different emission lines in flare and quiet modes of Proxima activity. Methods. We compare the pseudo-equivalent widths (pEW) and profiles of the emission lines in the HARPS high-resolution (R ~ 115,000) spectra observed at the same epochs. Results. All emission lines show variability with a timescale of at least 10 min. The strength of all lines except He I 4026 A correlate with \Halpha. During strong flares the `red asymmetry' appears in the Halpha emission line indicating the infall of hot condensed matter into the chromosphere with velocities greater than 100 km/s disturbing chromospheric layers. As a result, the strength of the Ca II lines anti-correlates with Halpha during strong flares. The He I lines at 4026 and 5876 A appear in the strong flares. The cores of D1 and D2 Na I lines are also seen in emission. During the minimum activity of Proxima Centauri, Ca II lines and Hepsilon almost disappear while the blue part of the Na I emission lines is affected by the absorption in the extending and condensing flows. Conclusions. We see different behaviour of emission lines formed in the flare regions and chromosphere. Chromosphere layers of Proxima Cen are likely heated by the flare events; these layers are cooled in the `non-flare' mode. The self-absorption structures in cores of our emission lines vary with time due to the presence of a complicated system of inward and outward matter flows in the absorbing layers.Comment: 22 pages, 12 Figures, accepted by A
    corecore