272 research outputs found

    Climate change litigation: a review of research on courts and litigants in climate government

    Get PDF
    Studies of climate change litigation have proliferated over the past two decades, as lawsuits across the world increasingly bring policy debates about climate change mitigation and adaptation, as well as climate change‐related loss and damage to the attention of courts. We systematically identify 130 articles on climate change litigation published in English in the law and social sciences between 2000 and 2018 to identify research trajectories. In addition to a budding interdisciplinarity in scholarly interest in climate change litigation we also document a growing understanding of the full spectrum of actors involved and implicated in climate lawsuits and the range of motivations and/or strategic imperatives underpinning their engagement with the law. Situating this within the broader academic literature on the topic we then highlight a number of cutting edge trends and opportunities for future research. Four emerging themes are explored in detail: the relationship between litigation and governance; how time and scale feature in climate litigation; the role of science; and what has been coined the “human rights turn” in climate change litigation. We highlight the limits of existing work and the need for future research—not limited to legal scholarship—to evaluate the impact of both regulatory and anti‐regulatory climate‐related lawsuits, and to explore a wider set of jurisdictions, actors and themes. Addressing these issues and questions will help to develop a deeper understanding of the conditions under which litigation will strengthen or undermine climate governance. This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governanc

    Poor screening and nonadiabatic superconductivity in correlated systems

    Full text link
    In this paper we investigate the role of the electronic correlation on the hole doping dependence of electron-phonon and superconducting properties of cuprates. We introduce a simple analytical expression for the one-particle Green's function in the presence of electronic correlation and we evaluate the reduction of the screening properties as the electronic correlation increases by approaching half-filling. The poor screening properties play an important role within the context of the nonadiabatic theory of superconductivity. We show that a consistent inclusion of the reduced screening properties in the nonadiabatic theory can account in a natural way for the TcT_c-ÎŽ\delta phase diagram of cuprates. Experimental evidences are also discussed.Comment: 12 Pages, 6 Figures, Accepted on Physical Review

    Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment

    Full text link
    The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process Ό−+d→n+n+ΜΌ\mu^- + d \rightarrow n + n + \nu_\mu. A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D2_2) or 120 e−e^- RMS with zero detector capacitance at 1.1 ÎŒ\mus integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D2_2) or 250 e−e^- RMS at a 0.5 ÎŒ\mus integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location.Comment: 18 pages + title page, 13 figures, to be submitted to JINST; minor corrections, added one reference, updated author lis

    Extended bound states and resonances of two fermions on a periodic lattice

    Full text link
    The high-TcT_c cuprates are possible candidates for d-wave superconductivity, with the Cooper pair wave function belonging to a non-trivial irreducible representation of the lattice point group. We argue that this d-wave symmetry is related to a special form of the fermionic kinetic energy and does not require any novel pairing mechanism. In this context, we present a detailed study of the bound states and resonances formed by two lattice fermions interacting via a non-retarded potential that is attractive for nearest neighbors but repulsive for other relative positions. In the case of strong binding, a pair formed by fermions on adjacent lattice sites can have a small effective mass, thereby implying a high condensation temperature. For a weakly bound state, a pair with non-trivial symmetry tends to be smaller in size than an s-wave pair. These and other findings are discussed in connection with the properties of high-TcT_c cuprate superconductors.Comment: 21 pages, RevTeX, 4 Postscript figures, arithmetic errors corrected. An abbreviated version (no appendix) appeared in PRB on March 1, 199

    Upper critical field for electrons in two-dimensional lattice

    Full text link
    We address a problem of the upper critical field in a lattice described by a two-dimensional tight-binding model with the on-site pairing. We develop a finite-system-approach which enables investigation of magnetic and superconducting properties of electrons on clusters, consisting of a few thousand sites. We discuss how the quasiparticle density of states changes with the applied external magnetic field and present the temperature dependence of the upper critical field. We also briefly discuss possible extension of the model to account for the properties of high-temperature superconductors.Comment: 4 pages, 3 postscript figures, revte

    Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure

    Get PDF
    We present measurements of the transport spin polarization of Ni_xFe_{1-x} (0<x<1) using the recently-developed Point Contact Andreev Reflection technique, and compare them with our first principles calculations of the spin polarization for this system. Surpisingly, the measured spin polarization is almost composition-independent. The results clearly demonstrate that the sign of the transport spin polarization does not coincide with that of the difference of the densities of states at the Fermi level. Calculations indicate that the independence of the spin polarization of the composition is due to compensation of density of states and Fermi velocity in the s- and d- bands

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+Îșt=1+\kappa, where Îș\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Universal Intermediate Phases of Dilute Electronic and Molecular Glasses

    Full text link
    Generic intermediate phases with anomalous properties exist over narrow composition ranges adjacent to connectivity transitions. Analysis of both simple classical and complex quantum percolation shows how topological concepts can be used to understand many mysterious properties of high temperature superconductors, including the remarkably similar phase diagrams of La(2-x)SrxCuO4 and C(60+y).Comment: 13 pages, 2 figs., 21 ref
    • 

    corecore