28 research outputs found

    Organic carbon hidden in urban ecosystems

    Get PDF
    Urbanization is widely presumed to degrade ecosystem services, but empirical evidence is now challenging these assumptions. We report the first city-wide organic carbon (OC) budget for vegetation and soils, including under impervious surfaces. Urban soil OC storage was significantly greater than in regional agricultural land at equivalent soil depths, however there was no significant difference in storage between soils sampled beneath urban greenspaces and impervious surfaces, at equivalent depths. For a typical U.K. city, total OC storage was 17.6 kg m2 across the entire urban area (assuming 0 kg m2 under 15% of land covered by buildings). The majority of OC (82%) was held in soils, with 13% found under impervious surfaces, and 18% stored in vegetation. We reveal that assumptions underpinning current national estimates of ecosystem OC stocks, as required by Kyoto Protocol signatories, are not robust and are likely to have seriously underestimated the contributions of urban areas

    Evolution of species interactions determines microbial community productivity in new environments

    No full text
    Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity–productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment

    Sustained release and osteogenic potential of heparan sulfate-doped fibrin glue scaffolds within a rat cranial model

    Get PDF
    This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies

    Different structural behaviors evidenced in thaumatin-like proteins: A spectroscopic study

    No full text
    Three proteins belonging to the thaumatin-like proteins family were compared in this study from a structural point of view: zeamatin, a new recently isolated PR-5 from Cassia didymobotrya and the commercial sweet-thaumatin. The former two proteins possess antifungal activities while commercial thaumatin is well known to be a natural sweetener. Intrinsic fluorescence studies have evidenced that the three proteins behave differently in unfolding experiments showing different structural rigidity. All the three proteins are more stable at slight acidic buffers, but sweet-thaumatin has a major tendency to destructurate itself. Similar observations were made from circular dichroism studies where a structural dependence relationship from the pH and the solvent used confirmed a hierarchic scale of stability for the three proteins. These structural differences should be considered to be significant for a functional rol
    corecore