55 research outputs found

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A critical review of dental implant materials with an emphasis on titanium versus zirconia

    Get PDF
    The goal of the current publication is to provide a comprehensive literature review on the topic of dental implant materials. The following paper focuses on conventional titanium implants and more recently introduced and increasingly popular zirconia implants. Major subtopics include the material science and the clinical considerations involving both implant materials and the influence of their physical properties on the treatment outcome. Titanium remains the gold standard for the fabrication of oral implants, even though sensitivity does occur, though its clinical relevance is not yet clear. Zirconia implants may prove to be promising in the future; however, further in vitro and well-designed in vivo clinical studies are needed before such a recommendation can be made. Special considerations and technical experience are needed when dealing with zirconia implants to minimize the incidence of mechanical failure

    Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology

    No full text
    Purpose: The aim of the present study was to evaluate the effect of the build angle and the support configuration (thick versus thin support) on the dimensional accuracy of 3D-printed full-coverage dental restorations. Materials and Methods: A full-coverage dental crown was digitally designed and 3D-printed using stereolithography-additive manufacturing (SLA-AM) technology. Nine different angles were used during the build process: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. In each angle, the crown was printed using a thin and a thick support type, resulting in 18 specimens. The specimens were digitally scanned using a highresolution optical surface scanner (IScan D104i; Imetric 3D). The dimensional accuracy was evaluated by digital subtraction technique. The 3D digital files of the scanned printed crowns (test model), exported in standard tessellation language (STL) format, were superimposed with the STL file of the designed crown (reference model) using Geomagic Studio 2014 (3D Systems). Results: The root mean square estimate value and color map results suggest that the build angle and support structure configuration have an influence on the dimensional accuracy of 3D-printed crown restorations. Among the tested angles, the 120-degree build angle showed a minimal deviation of 0.029 mm for thin support and 0.031 mm for thick support, indicating an accurate fit between the test and reference models. Furthermore, the deviation pattern observed in the color map was homogenously distributed and located further away from the critical marginal area. Conclusions: Within the limitations of this study, the selection of build angle should offer the crown the highest dimensional accuracy and self-supported geometry. This allows for the smallest necessary support surface area and decreases the time needed for finishing and polishing. These properties were mostly observed with a build angle of 120 degrees combined with a thin support type

    Additive manufacturing techniques in prosthodontics: Where do we currently stand? A critical review

    No full text
    Purpose: The aim of this article was to critically review the current application of additive manufacturing (AM)/3D-printing techniques in prosthodontics and to highlight the influence of various technical factors involved in different AM technologies. Materials and Methods: A standard approach of searching MEDLINE, EMBASE, and Google Scholar databases was followed. The following search terms were used: (Prosth* OR Restoration) AND (Prototype OR Additive Manufacture* OR Compute* OR 3D-print* OR CAD/CAM) AND (Dentistry OR Dental). Hand searching the reference lists of the included articles and personal connections revealed additional relevant articles. Selection criteria were any article written in English and reporting on the application of AM in prosthodontics from 1990 to February 2016. Results: From a total of 4,290 articles identified, 33 were seen as relevant. Of these, 3 were narrative reviews, 18 were in vitro studies, and 12 were clinical in vivo studies. Different AM technologies are applied in prosthodontics, directly and indirectly, for the fabrication of fixed metal copings, metal frameworks for removable partial dentures, and plastic mock-ups and resin patterns for further conventional metal castings. Technical factors involved in different AM techniques influence the overall quality, the mechanical properties of the printed parts, and the total cost and manufacturing time. Conclusion: AM is promising and offers new possibilities in the field of prosthodontics, though its application is still limited. An understanding of these limitations and of developments in material science is crucial prior to considering AM as an acceptable method for the fabrication of dental prostheses
    corecore