2,856 research outputs found

    Predicting house damage class using artificial intelligence method

    Full text link
    The unsatisfactory performance of light structures founded on expansive soils subject to seasonal movements is frequently reported since the early 1950\u27s in Australia. Excessive movements have caused damage to numerous structures that have not been adequately designed to accommodate soil volume changes. However, the sole presence of expansive soil is not necessarily the main cause of damage. Other factors such as vegetation, climate factors, types of construction materials and geology type may also contribute. This paper presents a model which predicts the damage class by analyzing combinations of the contributing factors using artificial intelligence methods. This model can help to identify if any serious and urgent repairs are necessary and immediate actions could be initiated without delay

    The ranking of factors influencing the behaviour of light structures on expansive soils in Victoria, Australia

    Full text link
    In this paper a Neural Network Model was used to develop a ranking of the potential damage influences for light structures on expansive soils in Victoria. These influences include geology, Thornthwaite moisture index, vegetation covers, construction foundation type, construction wall type, geographical region and age of building when first inspected. Approximately 400 cases of damage to light structures in Victoria, Australia were considered in this study. Feedforward Backpropagation was adopted to train the data. The ranking of importance was estimated using connection weight approach and then compared to results calculated from sensitivity analysis. From the analysis, the ranking of importance for potential damage factor was noted.<br /

    Data mining techniques for the assessment of factors contributing to the damage of residential houses in Australia

    Full text link
    This paper reports on the preparation and management processes of inconsistent data on damage on residential houses in Victoria, Australia. There are no existing specific and fully relevant databases readily available except for the incomplete paper-based and electronic-based reports. Therefore, the extracting of information from the reports is complicated and time consuming in order to extract and include all the necessary information needed for analysis of damage on residential houses founded on expansive soils. Data mining is adopted to develop a database. Statistical methods and Artificial Intelligence methods are used to quantify the quality of data. The paper concludes that the development of such database could enable BHC to evaluate the usefulness of the reports prepared on the reported damage properties for further analysis

    Expected Future Precipitation in Central Iraq Using LARS-WG Stochastic Weather Generator

    Get PDF
    The Middle East (ME) is characterized by its water shortage problem. This region with its arid climate is expected to be the most vulnerable in the world to the potential impacts of climate change. Iraq (located in ME) is seriously experiencing water shortage problem. To overcome this problem rain water harvesting can be used. In this study the applicability of the long-term weather generator model in downscaling daily precipitation Central Iraq is used to project future changes of precipitation based on scenario of seven General Circulation Models (GCMs) outputs for the periods of 2011-2030, 2046-2065, and 2080-2099. The results indicated that December-February and September-November periods, based on the ensemble mean of seven GCMs, showed an increasing trend in the periods considered; however, a decreasing trend can be found in March, April, and May in the future

    Application of neural networks in modelling serviceability deterioration of concrete stormwater pipes

    Full text link
    Stormwater pipe systems in Australia are designed to convey water from rainfall and surface runoff only and do not transport sewage. Any blockage can cause flooding events with the probability of subsequent property damage. Proactive maintenance plans that can enhance their serviceability need to be developed based on a sound deterioration model. This paper uses a neural network (NN) approach to model deterioration in serviceability of concrete stormwater pipes, which make up the bulk of the stormwater network in Australia. System condition data was collected using CCTV images. The outcomes of model are the identification of the significant factors influencing the serviceability deterioration and the forecasting of the change of serviceability condition over time for individual pipes based on the pipe attributes. The proposed method is validated and compared with multiple discriminant analysis, a traditionally statistical method. The results show that the NN model can be applied to forecasting serviceability deterioration. However, further improvements in data collection and condition grading schemes should be carried out to increase the prediction accuracy of the NN model.<br /

    CLIMATE CHANGE AND FUTURE PRECIPITATION IN AN ARID ENVIRONMENT OF THE MIDDLE EAST: CASE STUDY OF IRAQ

    Get PDF
    In this paper impact of climate change on precipitation in the arid environment of Iraq is examined. LARS-WG weather generator was applied to 5 representative regions to model current and future precipitation under climate change. Seven Global Climate Models (GCMs) have been employed to account for any uncertainty on future projection for three selected periods, 2011-2030, 2046-2065 and 2080-2099. Performance of LARS-WG in each site was first evaluated using the Kolmogorov-Smirnov statistical test for fitting wet/dry days in each site, as well as comparison of the mean and standard deviation between the observed and simulated precipitation. The developed LARS-WG models were found to perform well and skilful in simulating precipitation in the arid regions of Iraq as evidenced by the tests carried and the comparison made. The precipitation models were then used to obtain future projections for precipitation using the IPCC scenario SRES A2. Future precipitation results show that most of the Iraq regions are projected to suffer a reduction in annual mean precipitation, especially by the end of the 21st century, while on a seasonal basis most of the regions are anticipated to be wetter in autumn and winter. Journa

    Passengers' destinations from China: low risk of Novel Coronavirus (2019-nCoV) transmission into Africa and South America

    Get PDF
    Novel Coronavirus (2019-nCoV [SARS-COV-2]) was detected in humans during the last week of December 2019 at Wuhan city in China, and caused 24 554 cases in 27 countries and territories as of 5 February 2020. The objective of this study was to estimate the risk of transmission of 2019-nCoV through human passenger air flight from four major cities of China (Wuhan, Beijing, Shanghai and Guangzhou) to the passengers' destination countries. We extracted the weekly simulated passengers' end destination data for the period of 1–31 January 2020 from FLIRT, an online air travel dataset that uses information from 800 airlines to show the direct flight and passengers' end destination. We estimated a risk index of 2019-nCoV transmission based on the number of travellers to destination countries, weighted by the number of confirmed cases of the departed city reported by the World Health Organization (WHO). We ranked each country based on the risk index in four quantiles (4th quantile being the highest risk and 1st quantile being the lowest risk). During the period, 388 287 passengers were destined for 1297 airports in 168 countries or territories across the world. The risk index of 2019-nCoV among the countries had a very high correlation with the WHO-reported confirmed cases (0.97). According to our risk score classification, of the countries that reported at least one Coronavirus-infected pneumonia (COVID-19) case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two in the 3rd quantile, one in the 2nd quantile and none in the 1st quantile. Outside China, countries with a higher risk of 2019-nCoV transmission are Thailand, Cambodia, Malaysia, Canada and the USA, all of which reported at least one case. In pan-Europe, UK, France, Russia, Germany and Italy; in North America, USA and Canada; in Oceania, Australia had high risk, all of them reported at least one case. In Africa and South America, the risk of transmission is very low with Ethiopia, South Africa, Egypt, Mauritius and Brazil showing a similar risk of transmission compared to the risk of any of the countries where at least one case is detected. The risk of transmission on 31 January 2020 was very high in neighbouring Asian countries, followed by Europe (UK, France, Russia and Germany), Oceania (Australia) and North America (USA and Canada). Increased public health response including early case recognition, isolation of identified case, contract tracing and targeted airport screening, public awareness and vigilance of health workers will help mitigate the force of further spread to naïve countries

    The Global Health Security index and Joint External Evaluation score for health preparedness are not correlated with countries' COVID-19 detection response time and mortality outcome

    Get PDF
    Global Health Security Index (GHSI) and Joint External Evaluation (JEE) are two well-known health security and related capability indices. We hypothesised that countries with higher GHSI or JEE scores would have detected their first COVID-19 case earlier, and would experience lower mortality outcome compared to countries with lower scores. We evaluated the effectiveness of GHSI and JEE in predicting countries' COVID-19 detection response times and mortality outcome (deaths/million). We used two different outcomes for the evaluation: (i) detection response time, the duration of time to the first confirmed case detection (from 31st December 2019 to 20th February 2020 when every country's first case was linked to travel from China) and (ii) mortality outcome (deaths/million) until 11th March and 1st July 2020, respectively. We interpreted the detection response time alongside previously published relative risk of the importation of COVID-19 cases from China. We performed multiple linear regression and negative binomial regression analysis to evaluate how these indices predicted the actual outcome. The two indices, GHSI and JEE were strongly correlated (r = 0.82), indicating a good agreement between them. However, both GHSI (r = 0.31) and JEE (r = 0.37) had a poor correlation with countries' COVID-19–related mortality outcome. Higher risk of importation of COVID-19 from China for a given country was negatively correlated with the time taken to detect the first case in that country (adjusted R2 = 0.63–0.66), while the GHSI and JEE had minimal predictive value. In the negative binomial regression model, countries' mortality outcome was strongly predicted by the percentage of the population aged 65 and above (incidence rate ratio (IRR): 1.10 (95% confidence interval (CI): 1.01–1.21) while overall GHSI score (IRR: 1.01 (95% CI: 0.98–1.01)) and JEE (IRR: 0.99 (95% CI: 0.96–1.02)) were not significant predictors. GHSI and JEE had lower predictive value for detection response time and mortality outcome due to COVID-19. We suggest introduction of a population healthiness parameter, to address demographic and comorbidity vulnerabilities, and reappraisal of the ranking system and methods used to obtain the index based on experience gained from this pandemic
    • …
    corecore