In this paper a Neural Network Model was used to develop a ranking of the potential damage influences for light structures on expansive soils in Victoria. These influences include geology, Thornthwaite moisture index, vegetation covers, construction foundation type, construction wall type, geographical region and age of building when first inspected. Approximately 400 cases of damage to light structures in Victoria, Australia were considered in this study. Feedforward Backpropagation was adopted to train the data. The ranking of importance was estimated using connection weight approach and then compared to results calculated from sensitivity analysis. From the analysis, the ranking of importance for potential damage factor was noted.<br /