23 research outputs found

    The Financialization of US Higher Education

    No full text
    Research on financialization has been constrained by limited suitable measures for cases outside of the for-profit sector. Using the case of US higher education, we consider financialization as both increasing reliance on financial investment returns and increasing costs from transactions to acquire capital. We document returns and costs across four types of transactions: (i) revenues from endowment investments, (ii) interest payments on institutional borrowing by colleges, (iii) profits extracted by investors in for-profit colleges and (iv) interest payments on student loan borrowing by households. Estimated annual funding from endowment investments grew from 16billionin2003to16 billion in 2003 to 20 billion in 2012. Meanwhile financing costs grew from 21billionin2003to21 billion in 2003 to 48 billion in 2012, or from 5 to 9% of the total higher education spending, even as interest rates declined. Increases in financial returns, however, were concentrated at wealthy colleges whereas increases in financing costs tended to outpace returns at poorer institutions. We discuss the implications of the findings for resource allocation, organizational governance and stratification among colleges and households.1. Introduction 2. Financialization and higher education 3. Data and measures 4. College endowments and financial revenues 5. College institutional debt and interest costs 6. Proprietary colleges and profits as the costs of equity investment 7. Student loan debt and interest payments 8. Quantifying the costs of higher education financialization 9. Conclusions Supplementary material Funding Acknowledgements References Supplementary dat

    Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens

    Get PDF
    Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further

    Functional analysis of the sporulation-specific SPR6 gene of Saccharomyces cerevisiae

    Full text link
    The SPR6 gene of Saccharomyces cerevisiae encodes a moderately abundant RNA that is present at high levels only during sporulation. The gene contains a long open reading frame that could encode a hydrophilic protein approximately 21 kDa in size. This protein is probably produced by the yeast, because the lacZ gene of Escherichia coli is expressed during sporulation when fused to SPR6 in the expected reading frame. SPR6 is inessential for sporulation; mutants that lack SPR6 activity sporulate normally and produce viable ascospores. Nonetheless, the SPR6 gene encodes a function that is relevant to sporulating cells; the wild-type allele can enhance sporulation in strains that are defective for several SPR functions. SPR6 is located on chromosome V, 14.4 centimorgans centromere-distal to MET6 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46973/1/294_2004_Article_BF00318210.pd

    Polyubiquitylation of Histone H2B

    Get PDF
    Covalent modification of histones by ubiquitylation is a prominent epigenetic mark that features in a variety of chromatin-based events such as histone methylation, gene silencing, and repair of DNA damage. The prototypical example of histone ubiquitylation is that of histone H2B in Saccharomyces cerevisiae. In this case, attachment of ubiquitin to lysine 123 (K123) of H2B is important for regulation of both active and transcriptionally silent genes and participates in trans to signal methylation of histone H3. It is generally assumed that H2B is monoubiquitylated at K123 and that it is this single ubiquitin moiety that influences H2B function. To determine whether this assumption is correct, we have re-examined the ubiquitylation status of endogenous H2B in yeast. We find that, contrary to expectations, H2B is extensively polyubiquitylated. Polyubiquitylation of H2B appears to occur within the context of chromatin and is not associated with H2B destruction. There are at least two distinct modes of H2B polyubiquitylation: one that occurs at K123 and depends on the Rad6–Bre1 ubiquitylation machinery and another that occurs on multiple lysine residues and is catalyzed by an uncharacterized ubiquitin ligase(s). Interestingly, these ubiquitylation events are under the influence of different combinations of ubiquitin-specific proteases, suggesting that they have distinct biological functions. These results raise the possibility that some of the biological effects of ubiquitylation of H2B are exerted via ubiquitin chains, rather than a single ubiquitin group
    corecore