138 research outputs found

    Two Inputs Five-Level Quasi-Z-Source Inverter

    Get PDF
    This paper combines quasi-Z-source into a typical five-level inverter, which includes two dc voltage sources, two quasi-Z-sources and five switching devices. In this structure, the output voltage amplitude is not limited to dc voltage source and it can be increased by quasi-Z-source. Besides, due to nature of Z-source families, this new structure is reliable and higher efficiency. Also, in this inverter, two quasi-Z-networks can be controlled independently. This paper also proposes new switching algorithms for proposed five-level dual quasi-Z-Source inverter based on pulse width modulation (PWM) and selective harmonic elimination method (SHEM) algorithms .The performance of proposed inverter and switching algorithm are validated with simulation results using MATLAB/SIMULINK software and experimental results based PCI-1716 data acquisition system

    Head-neck taper corrosion in hip arthroplasty

    Get PDF
    Modularity at the head-neck junction of the femoral component in THA became popular as a design feature with advantages of decreasing implant inventory and allowing adjustment of leg length, offset, and soft tissue balancing through different head options. The introduction of a new modular interface to femoral stems that were previously monoblock, or nonmodular, comes with the potential for corrosion at the taper junction through mechanically assisted crevice corrosion. The incidence of revision hip arthroplasty is on the rise and along with improved wear properties of polyethylene and ceramic, use of larger femoral head sizes is becoming increasingly popular. Taper corrosion appears to be related to all of its geometric parameters, material combinations, and femoral head size. This review article discusses the pathogenesis, risk factors, clinical assessment, and management of taper corrosion at the head-neck junction.S. Hussenbocus, D. Kosuge, L. B. Solomon, D. W. Howie, and R. H. Oskoue

    The bacterial infection of German cockroach (Blatella germanica) in hospitals of western Iran

    Get PDF
    Cockroaches are considered a serious health problem in some medical centers. They can move freely in hospital wards and transmit pathogenic organisms. This study was carried out in order to detect and identify bacterial infection on outer surface and in digestive organs of Blatella germanica as a dominant species of cockroach in hospitals. In this cross-sectional study 222 B. germanica were collected from 14 different wards and units of 5 hospitals in the city of Hamedan in western Iran. Most of them were collected from dining room (34.2%) followed by urology ward (13.5%). After applying anesthesia and washing in 2cc physiology serum, the culture was prepared from this suspension for identification of bacterial infection on outer surface. Next, the outer surface of each cockroach was sterilized and their guts were isolated from mouth to anus. Bacteria extraction and culture were done accordingly. A total of 12 bacteria species were identified from outer surface and digestive system of cockroaches. On outer surface, Escherichia coli was the most dominant species (40%) followed by Staphylococcus epidermidis (20%). In digestive system E. coli had also the highest percentage (45%) followed by Entrobacter aeroginosa (20%). This study can show the importance of cockroaches as potential vectors of medically important microorganisms such as pathogenic bacteria in hospitals. Control programs for removing cockroaches, especially in the hospitals are recommended

    Absence of Myocardial Thyroid Hormone Inactivating Deiodinase Results in Restrictive Cardiomyopathy in Mice

    Get PDF
    Cardiac injury induces myocardial expression of the thyroid hormone inactivating type 3 deiodinase (D3), which in turn dampens local thyroid hormone signaling. Here, we show that the D3 gene (Dio3) is a tissue-specific imprinted gene in the heart, and thus, heterozygous D3 knockout (HtzD3KO) mice constitute a model of cardiac D3 inactivation in an otherwise systemically euthyroid animal. HtzD3KO newborns have normal hearts but later develop restrictive cardiomyopathy due to cardiac-specific increase in thyroid hormone signaling, including myocardial fibrosis, impaired myocardial contractility, and diastolic dysfunction. In wild-type littermates, treatment with isoproterenol-induced myocardial D3 activity and an increase in the left ventricular volumes, typical of cardiac remodeling and dilatation. Remarkably, isoproterenol-treated HtzD3KO mice experienced a further decrease in left ventricular volumes with worsening of the diastolic dysfunction and the restrictive cardiomyopathy, resulting in congestive heart failure and increased mortality. These findings reveal crucial roles for Dio3 in heart function and remodeling, which may have pathophysiologic implications for human restrictive cardiomyopathy

    Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methods

    Get PDF
    © 2014, ASM International. Delamination is one of the most common modes of failure in laminated composites and it leads to the loss of structural strength and stiffness. In this paper, mode I, mode II, and mixed of these pure modes were investigated using mechanical data, Finite Element Method (FEM) and Acoustic Emission (AE) signals. Experimental data were obtained from insitu monitoring of glass/epoxy laminated composites with different lay-ups when subjected to different modes of failure. The main objective was to investigate the behavior of delamination propagation and to evaluate the critical value of the strain energy which is required for onset of the delamination (GC). For the identification of interlaminar fracture toughness of the specimens, four methods were used: (a) ASTM standard methods, (b) FEM analysis, (c) AE method, and (d) sentry function method which is a function of mechanical and AE behaviors of the specimens. The results showed that the GC values obtained by the sentry function method and FEM analysis were in a close agreement with the results of nonlinearity methods which is recommended in the ASTM standards. It was also found that the specimens under different loading conditions and various lay-up have different GC values. These differences are related to different stress components distribution in the specimens which induce various damage mechanisms. Accordingly, stress components distribution obtained from FEM analyses were in agreement with SEM observations of the damaged surfaces of the specimens

    Honey health benefits and uses in medicine

    Get PDF
    The generation of reactive oxygen species (ROS) and other free radicals during metabolism is an essential and normal process that ideally is compensated through the antioxidant system. However, due to many environmental, lifestyle, and pathological situations, free radicals and oxidants can be produced in excess, resulting in oxidative damage of biomolecules (e.g., lipids, proteins, and DNA). This plays a major role in the development of chronic and degenerative illness such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular, and neurodegenerative diseases (Pham-Huy et al. 2008; Willcox et al. 2004). The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally synthetized in situ, or externally supplied through foods, and/or supplements (Pham-Huy et al. 2008).info:eu-repo/semantics/publishedVersio

    Comparison of single- and multistage strategies during fenestrated-branched endovascular aortic repair of thoracoabdominal aortic aneurysms

    Get PDF
    Objective: The aim of this study was to compare outcomes of single or multistage approach during fenestrated-branched endovascular aortic repair (FB-EVAR) of extensive thoracoabdominal aortic aneurysms (TAAAs). Methods: We reviewed the clinical data of consecutive patients treated by FB-EVAR for extent I to III TAAAs in 24 centers (2006-2021). All patients received a single brand manufactured patient-specific or off-the-shelf fenestrated-branched stent grafts. Staging strategies included proximal thoracic aortic repair, minimally invasive segmental artery coil embolization, temporary aneurysm sac perfusion and combinations of these techniques. Endpoints were analyzed for elective repair in patients who had a single- or multistage approach before and after propensity score adjustment for baseline differences, including the composite 30-day/in-hospital mortality and/or permanent paraplegia, major adverse event, patient survival, and freedom from aortic-related mortality. Results: A total of 1947 patients (65% male; mean age, 71 ± 8 years) underwent FB-EVAR of 155 extent I (10%), 729 extent II (46%), and 713 extent III TAAAs (44%). A single-stage approach was used in 939 patients (48%) and a multistage approach in 1008 patients (52%). A multistage approach was more frequently used in patients undergoing elective compared with non-elective repair (55% vs 35%; P < .001). Staging strategies were proximal thoracic aortic repair in 743 patients (74%), temporary aneurysm sac perfusion in 128 (13%), minimally invasive segmental artery coil embolization in 10 (1%), and combinations in 127 (12%). Among patients undergoing elective repair (n = 1597), the composite endpoint of 30-day/in-hospital mortality and/or permanent paraplegia rate occurred in 14% of single-stage and 6% of multistage approach patients (P < .001). After adjustment with a propensity score, multistage approach was associated with lower rates of 30-day/in-hospital mortality and/or permanent paraplegia (odds ratio, 0.466; 95% confidence interval, 0.271-0.801; P = .006) and higher patient survival at 1 year (86.9±1.3% vs 79.6±1.7%) and 3 years (72.7±2.1% vs 64.2±2.3%; adjusted hazard ratio, 0.714; 95% confidence interval, 0.528-0.966; P = .029), compared with a single stage approach. Conclusions: Staging elective FB-EVAR of extent I to III TAAAs was associated with decreased risk of mortality and/or permanent paraplegia at 30 days or within hospital stay, and with higher patient survival at 1 and 3 years

    Conventionally assessed voluntary activation does not represent relative voluntary torque production

    Get PDF
    The ability to voluntarily activate a muscle is commonly assessed by some variant of the twitch interpolation technique (ITT), which assumes that the stimulated force increment decreases linearly as voluntary force increases. In the present study, subjects (n = 7) with exceptional ability for maximal voluntary activation (VA) of the knee extensors were used to study the relationship between superimposed and voluntary torque. This includes very high contraction intensities (90–100%VA), which are difficult to consistently obtain in regular healthy subjects (VA of ∼90%). Subjects were tested at 30, 60, and 90° knee angles on two experimental days. At each angle, isometric knee extensions were performed with supramaximal superimposed nerve stimulation (triplet: three pulses at 300 Hz). Surface EMG signals were obtained from rectus femoris, vastus lateralis, and medialis muscles. Maximal VA was similar and very high across knee angles: 97 ± 2.3% (mean ± SD). At high contraction intensities, the increase in voluntary torque was far greater than would be expected based on the decrement of superimposed torque. When voluntary torque increased from 79.6 ± 6.1 to 100%MVC, superimposed torque decreased from 8.5 ± 2.6 to 2.8 ± 2.3% of resting triplet. Therefore, an increase in VA of 5.7% (from 91.5 ± 2.6 to 97 ± 2.3%) coincided with a much larger increase in voluntary torque (20.4 ± 6.1%MVC) and EMG (33.9 ± 6.6%max). Moreover, a conventionally assessed VA of 91.5 ± 2.6% represented a voluntary torque of only 79.6 ± 6.1%MVC. In conclusion, when maximal VA is calculated to be ∼90% (as in regular healthy subjects), this probably represents a considerable overestimation of the subjects’ ability to maximally drive their quadriceps muscles

    Implantation of Mouse Embryonic Stem Cell-Derived Cardiac Progenitor Cells Preserves Function of Infarcted Murine Hearts

    Get PDF
    Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart
    • …
    corecore