58 research outputs found

    Some introductory remarks on microbeam diffraction in nanobiosciences

    Full text link

    Reversibly compressible and freestanding monolithic carbon spherogels

    Get PDF
    We present a versatile strategy to tailor the nanostructure of monolithic carbon aerogels. By use of an aqueous colloidal solution of polystyrene in the sol-gel processing of resorcinol-formaldehyde gels, we can prepare, after supercritical drying and successive carbonization, freestanding monolithic carbon aerogels, solely composed of interconnected and uniformly sized hollow spheres, which we name carbon spherogels. Each sphere is enclosed by a microporous carbon wall whose thickness can be adjusted by the polystyrene concentration, which affects the pore texture as well as the mechanical properties of the aerogel monolith. In this study, we used monodisperse polystyrene spheres of approximately 250 nm diameter, which result in an inner diameter of the final hollow carbon spheres of approximately 200 ± 5 nm due to shrinkage during the carbonization process. The excellent homogeneity of the samples, as well as uniform sphere geometries, are confirmed by small- and angle X-ray scattering. The presence of macropores between the hollow spheres creates a monolithic network with the benefit of being reversibly compressible up to 10% linear strain without destruction. Electrochemical tests demonstrate the applicability of ground and CO2 activated carbon spherogels as electrode materials

    Effect of particle size and Debye length on order parameters of colloidal silica suspensions under confinement

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Using atomic force microscopy (AFM) and small angle X-ray scattering (SAXS), we show a full comparison between structuring of nanoparticles in confinement and in bulk in order to explain the effect of confinement on characteristic lengths and the scaling law of the characteristic lengths. Three different-sized particle suspensions are used to check the generalization and the correlation between the characteristic lengths and the system parameters, like particle diameter and Debye length. The two characteristic lengths obtained from AFM force curves, the oscillatory wavelength λ, which is related to the average particle distance, and the decay length Ο, which measures how far particle correlates to obtain periodic oscillations, are in good agreement with the mean particle distance 2π/qmax and the correlation length 2/Δq in bulk, respectively, obtained from the structure peaks of SAXS diagrams. Although confinement causes layering of nanoparticles parallel to the confining surfaces, the characteristic lengths in the direction perpendicular to the confining surfaces follow the bulk behavior. The wavelength scales as ρ−1/3 with the particle number density ρ irrespective of the particle size and the ionic strength and shows a pure volume effect. Upon comparing with literature results, the λ = ρ−1/3 scaling law can be applied more generally for charged particles, as long as the repulsive interaction is sufficiently long-ranged, than the previous expression of λ = 2(R + Îș−1), which only approaches the value of average particle distance under specific conditions. The decay length Ο is controlled both by the particle size and the ionic strength of the suspensions, and Ο = R + Îș−1 is proposed in the paper. In addition, the interaction strength, the force amplitude and maximum scattering intensity, increases linearly with particle concentration. On the other hand, the Monte Carlo (MC) simulations and approximate hypernetted chain (HNC) closure calculation based on Derjaguin-Landau-Verwey-Overbeek (DLVO) potential are employed to study the characteristic lengths from the theoretical point of view. The experimental wavelengths are in good agreement with the theoretical counterparts and the experimental decay lengths show the same qualitative behavior as theoretical ones on the particle size and ionic strength.DFG, SPP 1273, KolloidverfahrenstechnikDFG, GRK 1524, Self-Assembled Soft-Matter Nanostructures at Interface

    Advanced Materials Technologies / 3D Printing of Hierarchical Porous Silica and -Quartz

    Get PDF
    The ability to macroscopically shape highly porous oxide materials while concomitantly tailoring the porous network structure as desired by simple and environmentally friendly processes is of great importance in many fields. Here, a purely aqueous printing process toward deliberately shaped, hierarchically organized amorphous silica and the corresponding polycrystalline quartz analogues based on a direct ink writing process (DIW) is presented. The key to success is the careful development of the solgel ink, which is based on an acidic aqueous sol of a glycolated silane and structuredirecting agents. The resulting 3D (DIW) printed silica consists of a macroporous network of struts comprising hexagonally arranged mesopores on a 2D hexagonal lattice. Together with a printed porous superstructure on the millimeter scale, welldefined pore sizes and shapes on at least three hierarchy levels can thus be fabricated. The introduction of devitrifying agents in the printed green part and subsequent heat treatment allows for the transformation of the silica structure into polycrystalline quartz. While small pores (micro and mesopores below 10 nm) are lost, the printed morphology and the macroporous network of struts is preserved during crystallization.1605N20(VLID)266643

    Crystal Phase Transitions in the Shell of PbS CdS Core Shell Nanocrystals Influences Photoluminescence Intensity

    Get PDF
    ABSTRACT We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS shell of PbS CdS core shell nanocrystals formed by cationic exchange. The chemical composition profile of the core shell nanocrystals with different dimensions is determined by means of anomalous small angle X ray scattering with subnanometer resolution and is compared to X ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing Exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but Shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thicknes

    Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging

    Get PDF
    Equisetaceae has been of research interest for decades, as it is one of the oldest living plant families, and also due to its high accumulation of silica up to 25% dry wt. Aspects of silica deposition, its association with other biomolecules, as well as the chemical composition of the outer strengthening tissue still remain unclear. These questions were addressed by using high resolution (<1 Όm) Confocal Raman microscopy. Two-dimensional spectral maps were acquired on cross sections of Equisetum hyemale and Raman images calculated by integrating over the intensity of characteristic spectral regions. This enabled direct visualization of differences in chemical composition and extraction of average spectra from defined regions for detailed analyses, including principal component analysis (PCA) and basis analysis (partial least square fit based on model spectra). Accumulation of silica was imaged in the knobs and in a thin layer below the cuticula. In the spectrum extracted from the knob region as main contributions, a broad band below 500 cm−1 attributed to amorphous silica, and a band at 976 cm−1 assigned to silanol groups, were found. From this, we concluded that these protrusions were almost pure amorphous, hydrated silica. No silanol group vibration was detected in the silicified epidermal layer below and association with pectin and hemicelluloses indicated. Pectin and hemicelluloses (glucomannan) were found in high levels in the epidermal layer and in a clearly distinguished outer part of the hypodermal sterome fibers. The inner part of the two-layered cells revealed as almost pure cellulose, oriented parallel along the fiber
    • 

    corecore