78 research outputs found

    Hybrid Modeling of Offshore Platforms’ Stress-Deformed and Limit States Taking into Account Probabilistic Parameters

    Get PDF
    Offshore platforms should be referred to critically and strategically important objects of a technosphere due to technological and operational challenges, on the one hand, and the danger potential level, on the other hand. Environmental, social and economic losses occurred over several decades of accidents and disasters in unique Great Britain, Norwegian. The Russian and the USA platforms were evaluated in death of dozens of operators, destruction of platforms, environment contamination and hence in multi-bullion losses. All of these indicate insufficiency of currently taken engineering solutions, providing structure strength, operational life and safety. The scientific, design, expert and supervising organizations in Russia and in the world are developing and improving mathematical and physical methods, implementing the probabilistic formulations for accidents and disasters, risk assessment and risks reduction on offshore platforms. The solutions of the following problems are included: extension of the comprehensive computational and experimental strength, operational life and survivability analysis to the cases of nonroutine events, accidental and catastrophic conditions; numerical justification of modelling of critical elements, zones and points with the maximum tension, deformations and damages occurring under impacts of external extreme seismic, ice, wind, low temperature; implementation of comprehensive diagnostic methods for damage states evaluation within nonlinear and probabilistic fracture mechanics; and use of new structural design and technological systems for reduction of negative extreme impacts as well as emergency protection systems. The solution of the specified problems is illustrated by case studies of the Russian specialists for each life cycle stage of the platforms offshore Caspian and Kara Seas and Sea of Okhotsk

    Prospects for Establishment of Technological Complexes in Machine Building Industry on The Basis of Electromechatronic Propulsion Systems

    Get PDF
    The authors consider prospects for technological complex establishment in machine building industry on the basis of electromechatronic propulsion systems for production of innovative products with different novelty levels: world, state, brunch, region, etc

    Multifocal diffractive lens generating several fixed foci at different design wavelengths

    Get PDF
    We propose a method for designing multifocal diffractive lenses generating prescribed sets of foci with fixed positions at several different wavelengths. The method is based on minimizing the difference between the complex amplitudes of the beams generated by the lens microrelief at the design wavelengths, and the functions of the complex transmission of multifocal lenses calculated for these wavelengths. As an example, a zone plate generating three fixed foci at three different wavelengths was designed, fabricated, and experimentally investigated. The proof-of-concept experimental results confirm the formation of foci with fixed positions at the design wavelengths. The obtained results may find applications in the design and fabrication of novel multifocal contact and intraocular lenses with reduced chromatic effects

    Are Bosonic Replicas Faulty?

    Full text link
    Motivated by the ongoing discussion about a seeming asymmetry in the performance of fermionic and bosonic replicas, we present an exact, nonperturbative approach to zero-dimensional replica field theories belonging to the broadly interpreted "beta=2" Dyson symmetry class. We then utilise the formalism developed to demonstrate that the bosonic replicas do correctly reproduce the microscopic spectral density in the QCD inspired chiral Gaussian unitary ensemble. This disproves the myth that the bosonic replica field theories are intrinsically faulty.Comment: 4.3 pages; final version to appear in PR

    Crossover of thermal to shot noise in chaotic cavities

    Full text link
    We study the crossover between thermal and shot-noise power in a chaotic quantum dot in the presence of non-ideal contacts at finite temperature. The result explicitly demonstrates that the temperature affect the suppression-amplification effect present in the main quantum noise. In particular, the weak localization contribution to the noise has an anomalous thermal behavior when one let the barriers vary, indicating the presence of a critical point related to specific value of the tunneling barriers. We also show how to get to the opaque limit of the quantum dot at finite temperature.Comment: 6 pages, 5 figures. To be published in Europhysics Letter

    Application of nanoimprinting technique for fabrication of trifocal diffractive lens with sine-like radial profile

    Get PDF
    The fabrication of submicron-height sine-like relief of a trifocal diffractive zone plate using a nanoimprinting technique is studied. The zone plate is intended for use in combined trifocal diffractive-refractive lenses and provides the possibility to form trifocal intraocular lenses with predetermined light intensity distribution between foci. The optical properties of the designed zone plate having the optical powers 3 D, 0, -3D in the three main diffraction orders are theoretically and experimentally investigated. The results of the theoretical investigations are in good agreement with experimental measurements. The effects of the pupil size (lens diameter) as well as the wavelength-dependent behavior of the zone plate are also discussed

    Modification of the experimental setup of the FTIR spectrometer and thirty-meter optical cell for measurements of weak selective and nonselective absorptions

    Get PDF
    The improvement of the experimental setup based on a Fourier spectrometer Bruker IFS-125 and a 30-meter multipass optical cell is described. The improvement includes the cell equipment with a system of automated adjustment of the number of beam passes without cell depressurization and ensures the cell work at high temperatures
    corecore