16 research outputs found

    Differential inflammasome expression and IL-1ÎČ secretion in monocyte-derived dendritic cells differentiated with IL-4 or IFN-α

    Get PDF
    NLRP3-inflammasome activation was evaluated in monocyte-derived dendritic cells (DC) obtained through IL-4 (IL4-DC) or IFN-α (IFN-DC) protocols and pulsed with chemically inactivated HIV-1. Inflammasome' genes expression and IL-1ÎČ secretion were compared in DC isolated from 15 healthy subjects (HC) and 10 HIV-1 infected individuals (HIV+).\ud \ud FINDINGS:\ud Whether HIV was able to increased NLRP3-inflammasome genes expression and IL-1ÎČ secretion in IL4-DC from HC, the induction of inflammasome appeared significantly reduced in IFN-DC from HC, suggesting a different responsive state of IFN-DC compared to IL4-DC. No inflammasome activation was observed in IL4-DC as well as in IFN-DC derived from HIV + subjects, confirming previous findings on "unresponsive" state of DC derived from HIV + possibly due to chronic inflammatory state of these individuals.\ud \ud CONCLUSIONS:\ud Our results showed that IFN-α differently modulates inflammasome expression during monocytes-DC in vitro differentiation. These findings could be of interest considering the on-going research about DC manipulation and therapeutic strategies for HIV + involving DC-based immune-vaccines.Sao Paulo Research Foundation (FAPESP

    Using Dendritic Cell-Based Immunotherapy to Treat HIV: How Can This Strategy be Improved?

    Get PDF
    Harnessing dendritic cells (DC) to treat HIV infection is considered a key strategy to improve anti-HIV treatment and promote the discovery of functional or sterilizing cures. Although this strategy represents a promising approach, the results of currently published trials suggest that opportunities to optimize its performance still exist. In addition to the genetic and clinical characteristics of patients, the efficacy of DC-based immunotherapy depends on the quality of the vaccine product, which is composed of precursor-derived DC and an antigen for pulsing. Here, we focus on some factors that can interfere with vaccine production and should thus be considered to improve DC-based immunotherapy for HIV infection

    Prevalence of anti-SARS-CoV-2 antibodies in outpatients of a large public university hospital in Sao Paulo, Brazil

    Get PDF
    Coronavirus disease 19 (COVID-19) is caused by SARS-Cov-2 and the manifestations of this infection range from an absence of symptoms all the way up to severe disease leading to death. To estimate the prevalence of past infection in a population, the most readily available method is the detection of antibodies against the virus. This study has investigated the prevalence of anti-SARS-CoV-2 antibodies in outpatients of the Hospital das Clinicas, in Sao Paulo city (Brazil), which is a large university hospital belonging to the public health system that cares for patients with complex diseases who need tertiary or quaternary medical care. Our serological inquiry was carried out for 6 weeks, with once-a-week blood sampling and included 439 patients from several outpatient services. Overall, 61 patients tested positive for anti-SARS-CoV-2 IgG (13.9%); 56.1 % of the patients live in Sao Paulo city, with the remaining living in other towns of the metropolitan area; 32.8% of the patients testing positive for IgG antibodies to SARS-CoV-2 were asymptomatic, 55.7% developed mild or moderate disease and 11.5% had to be hospitalized. The prevalence of SARS-CoV-2 positive serology was lower among patients who had received the seasonal influenza vaccine compared to the ones who did not. These findings may indicate that those individuals care more about health issues, and/or that they have a better access to health care and/or a better quality of health care service. The large proportion of patients who were unaware of having had contact with SARS-CoV-2 deserves attention, reflecting the scarcity of tests performed in the population

    SARS-CoV-2 recombinant proteins stimulate distinct cellular and humoral immune response profiles in samples from COVID-19 convalescent patients

    Get PDF
    OBJECTIVES: In this preliminary study we investigated cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in blood samples from 14 recovered coronavirus disease 2019 (COVID-19) patients and compared them to those in samples from 12 uninfected/unvaccinated volunteers. METHODS: Cellular immunity was assessed by intracellular detection of IFN-Îł in CD3+ T lymphocytes after stimulation with SARS-CoV-2 spike (S1), nucleocapsid (NC), or receptor-binding domain (RBD) recombinant proteins or overlapping peptide pools covering the sequence of SARS-CoV-2 spike, membrane and nucleocapsid regions. The humoral response was examined by ELISAs and/or chemiluminescence assays for the presence of serum IgG antibodies directed to SARS-CoV-2 proteins. RESULTS: We observed differences between humoral and cellular immune profiles in response to stimulation with the same proteins. Assays of IgG antibodies directed to SARS-CoV-2 NC, RBD and S1/S2 recombinant proteins were able to differentiate convalescent from uninfected/unvaccinated groups. Cellular immune responses to SARS-CoV-2 protein stimuli did not exhibit a specific response, as T cells from both individuals with no history of contact with SARS-CoV-2 and from recovered donors were able to produce IFN-Îł. CONCLUSIONS: Determination of the cellular immune response to stimulation with a pool of SARS-CoV-2 peptides but not with SARS-CoV-2 proteins is able to distinguish convalescent individuals from unexposed individuals. Regarding the humoral immune response, the screening for serum IgG antibodies directed to SARS-CoV-2 proteins has been shown to be specific for the response of recovered individuals

    Immunogenicity of personalized dendritic-cell therapy in HIV-1 infected individuals under suppressive antiretroviral treatment:interim analysis from a phase II clinical trial

    Get PDF
    BACKGROUND: We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. METHODS: PBMCs were obtained from 10 HIV(+) individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-Îł) production were measured in CD4(+) and CD8(+) T-cells. RESULTS: The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4(+) and CD8(+) T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-Îł expression was significantly increased in CD4(+) T-cells. The number of candidates that increased in vitro the cytokine levels in CD4(+) and CD8(+) T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. CONCLUSIONS: MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016) SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12981-021-00426-z

    HIV-1 induces NALP3-inflammasome expression and interleukin-1 beta secretion in dendritic cells from healthy individuals but not from HIV-positive patients

    No full text
    Objective: NALP3-inflammasome is an innate mechanism, alternative to type-1 interferon, which is able to recognize nucleic acids and viruses in the cytoplasm and to induce pro-inflammatory response. Here, we hypothesized the involvement of inflammasome in the early defense against HIV-1 and in the full maturation of dendritic cells: for this, we evaluated the response of dendritic cells pulsed with HIV-1 in terms of inflammasome activation in healthy donors. Moreover, inflammasome response to HIV was evaluated in HIV-infected individuals. Design and methods: Monocyte-derived dendritic cells isolated from 20 healthy individuals (HC-DC) and 20 HIV-1-infected patients (HIV-DC) were pulsed with alditrithiol-2-inactivated HIV-1. We then analyzed inflammasome genes expression and interleukin-1 beta (IL-1 beta) secretion. Results: In HC-DC, HIV-1 induced higher NLRP3/NALP3 mRNA expression compared with other inflammasome genes such as NALP1/NLRP1 or IPAF/NLRC4 (P < 0.001). This augmented expression was accompanied by CASP1-increased and IL1B-increased mRNA levels and by a significant increment of IL-1b secretion (P < 0.05). Otherwise, HIV-1 failed to activate inflammasome and cytokine production in HIV-DC. HIV-DC showed an increased NLRP3/NALP3 basal expression, suggesting a chronic inflammatory profile of patients' immune cells. Conclusion: HIV-1 was able to induce a NALP3-inflammasome response in healthy individuals, indicating that this inflammasome could play a role in the first steps of HIV-1 infection; the consequent inflammatory process may be important for directing host immune response against the virus and/or disease progression. HIV-DC seemed to be chronically activated, but unresponsive against pathogens. Our findings could be of interest considering the ongoing research about dendritic cell manipulation and therapeutic strategies for AIDS involving dendritic cell-based immune-vaccines. (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & WilkinsSao Paulo Research foundation (FAPESP) [09/53575-5]Sao Paulo Research Foundation (FAPESP)IRCCS Burlo Garofolo (Trieste, Italy)IRCCS 'Burlo Garofolo' (Trieste, Italy) [RC 07/08]FAPESPFAPESPTALENTS ProgrammeTALENTS Programm
    corecore