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Abstract 

Background: We developed a personalized Monocyte‑Derived Dendritic‑cell Therapy (MDDCT) for HIV‑infected 
individuals on suppressive antiretroviral treatment and evaluated HIV‑specific T‑cell responses.

Methods: PBMCs were obtained from 10  HIV+ individuals enrolled in trial NCT02961829. Monocytes were differen‑
tiated into DCs using IFN‑α and GM‑CSF. After sequencing each patient’s HIV‑1 Gag and determining HLA profiles, 
autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse 
MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were 
stimulated in vitro with autologous peptides, and intracellular IL‑2, TNF, and interferon‑gamma (IFN‑γ) production 
were measured in  CD4+ and  CD8+ T‑cells.

Results: The protocol of ex‑vivo treatment with IFN‑α and GM‑CSF was able to induce maturation of MDDCs, as 
well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of 
IL‑2 in  CD4+ and  CD8+ T‑cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF 
and IFN‑γ expression was significantly increased in  CD4+ T‑cells. The number of candidates that increased in vitro 
the cytokine levels in  CD4+ and  CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from 
baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was 
accompanied by an increasing trend in the frequency of polyfunctional T‑cells over time, which was visible when 
considering both cells expressing two and three out of the three cytokines examined.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

AIDS Research and Therapy

*Correspondence:  rsdiaz@catg.com.br
1 Retrovirology Laboratory, Federal University of Sao Paulo, R. Pedro de 
Toledo, 669, Sao Paulo, SP 04039‑032, Brazil
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8395-7304
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12981-021-00426-z&domain=pdf


Page 2 of 15de Almeida Baptista et al. AIDS Research and Therapy            (2022) 19:2 

Introduction
The onset of HIV-1 infection induces a robust immune 
response by the host [1, 2]. However, this response does 
not typically lead to immunological control of the infec-
tion, as shown by the rapid rebound of viremia after 
interruption of antiretroviral treatment (ART) [3–7]. Of 
note, the extent of post-therapy viral load rebound is pro-
portional to the size of the HIV-infected cellular reser-
voir, and the size of this reservoir is in turn proportional 
to the length of the period during which the infection 
progresses without ART [7].

Pivotal for the immune response, dendriticcells (DC) 
are professional antigen presenters. These cells are ana-
tomically positioned as sentinels for detecting danger 
signals, thus triggering an innate and adaptive immune 
response [8]. DCs can migrate to lymph nodes and other 
HIV-1 sanctuaries and, once activated, produce interleu-
kins such as IL-12, IL-15, and IL-18, promoting a potent 
cytotoxic T-cell response necessary for the elimination 
of infected cells. Due to these characteristics, therapy 
approaches based on DCs have been proposed and tested 
to modulate the host’s immune response to HIV-1 infec-
tion [3, 9–20].

DC-based therapy relies on in-vitro pulsing or elec-
troporating of autologous monocyte-derived DCs 
(MDDCs) with whole inactivated HIV-1, with RNA cod-
ing for viral antigens [12], or with specific sets of pep-
tides [9, 11], to induce recognition of viral epitopes by 
the individual’s human leukocyte antigens (HLAs) on the 
DC surface. Peptide-pulsed DCs are then reinfused into 
the donor to provide an appropriate antigenic stimulus 
within the body when retroviral replication is still sup-
pressed by ART. While MDDC therapy (MDDCT) has 
been typically administered to HIV-infected individuals 
under ART, the virus used for MDDCT design or prep-
aration was obtained from samples of treatment-naive 
individuals. This choice was determined by the pres-
ence of a high percentage of defective viruses in cells 
of patients under long-term ART, rendering difficult 
the isolation and in-vitro expansion of high amounts of 
replication-competent HIV-1 [21, 22]. HIV-1 peptides 
typically employed in MDDCT design have been derived 
from highly conserved proteins of HIV-1, i.e., Gag, Pol, 
and Nef [9, 11]. Moreover, conserved portions of vari-
able antigens such as Env have been considered [14, 15]. 

After infusion, the therapeutic efficacy of the MDDCT is 
assessed by interrupting ART to check whether viral load 
suppression can be maintained in the absence of drugs 
[10, 11, 15, 18, 19]. Moderate post-therapy efficacy was 
observed in some of these studies [10, 18]. In particular, 
an MDDCT strategy based on Gag, Pol, and Nef anti-
gens, was associated with a post-therapy decrease of the 
viral load set point of one order of magnitude in a sub-
set of patients [11]. However, in this case, and all other 
MDDCT studies reported so far, post-therapy viral load 
control was not comparable to that exerted by ART. 
Although this and other results have suggested that DC-
based MDDCTs, if improved, might become an essen-
tial therapeutic tool, the correlates of immune control 
of viral load in the MDDCT responder subpopulation 
have remained unclear. One possible limitation of the 
approaches tested so far is using a standardized MDDCT 
design, administered to all patients independently of 
their HLA genotype. Given the degree of HLA polymor-
phism worldwide [23], individual variability can signifi-
cantly impact immune recognition.

Another potential limitation in the design of the 
MDDCTs attempted so far is the choice of antigens used 
for immunization. Indeed, correlation studies between 
cell-mediated immunity and HIV-1 viral load control 
suggest that a narrower selection of viral proteins as 
MDDCT targets might be preferable. In particular, the 
viral capsid Gag protein represents an attractive tar-
get since anti-Gag cell-mediated immunity was repeat-
edly highlighted as the main immunological correlate 
of reduced viral load and decreased disease progression 
[24–29]. Additional evidence suggests that latently HIV-1 
infected cells, which are the main obstacle to the cure of 
HIV-1, express low levels of the Gag protein and could 
thus be detected and eventually eliminated by Gag-spe-
cific cytotoxic T-lymphocytes [30, 31]. The particular 
efficacy of anti-Gag immunity is likely determined by 
the structural role of the main maturation product of 
Gag, i.e., the viral core protein p24, which is the build-
ing block of the HIV-1 capsid [32]. Several constraints 
lock p24 within the icosahedral capsid structure, limit-
ing its capability to mutate [33, 34] without, however, 
abrogating it entirely [35]. Apart from being less effec-
tive, cell-mediated immune responses directed against 
viral targets other than Gag might contribute to immune 

Conclusions: MDDC had a mature profile, and this MDDCT promoted in‑vitro T‑cell immune responses in HIV‑
infected patients undergoing long‑term suppressive antiretroviral treatment.

Trial registration NCT02961829: (Multi Interventional Study Exploring HIV‑1 Residual Replication: a Step Towards HIV‑1 
Eradication and Sterilizing Cure, https:// www. clini caltr ials. gov/ ct2/ show/ NCT02 961829, posted November 11th, 2016)

Keywords: Dendritic‑cell therapy, HIV GAG , HLA Haplotypes, HIV cure research, Precision medicine
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hyperactivation and exhaustion [36]. Moreover, pre-
existing cell-mediated immune responses against differ-
ent viral antigens might hamper MDDCT efficacy.

For this reason, an appropriate conditioning regimen, 
erasing some of the previously acquired immunity, could 
constitute a valuable addition to MDDCT. In this regard, 
lymphorestrictive approaches in the setting of chronic 
diseases characterized by malignant immune hyperacti-
vation, such as HIV/AIDS or cancer, may paradoxically 
result in enhanced cell-mediated responses against the 
diseased cells [37, 38]. Of note, none of the MDDCT 
approaches attempted so far have been associated with 
any conditioning regimen.

Given these premises, we designed and tested a per-
sonalized MDDCT using autologous HIV Gag peptides 
from patients undergoing long-term suppressive ART 
to decrease the reservoir of HIV-infected cells. This 
MDDCT was administered in the context of a larger clin-
ical trial (clinicaltrials.gov ID: NCT02961829) which also 
examined the effects of a conditioning regimen consist-
ing of auranofin to decrease the central memory T-cell 
pool encompassing the viral reservoir [39–41]) and nico-
tinamide, favoring HIV escape from latency to facilitate 
recognition of the HIV-infected cells [42, 43]. To assess 
the immunogenicity of our personalized MDDCT strat-
egy and help guide the choice of analytical treatment 
interruption (ATI) in a larger planned trial, we performed 
an interim analysis of immunologic parameters in the 
MDDCT recipients.

Materials and methods
The general plan of the study
Between February 2015 and May 2016, 10 chronically 
HIV-1-infected patients were included in treatment arms 
5 and 6 of the SPARC-06 Clinical Trial (NCT02961829) 
to receive an autologous MDDCT without or with a 
conditioning regimen consisting of nicotinamide and 
auranofin [39]. We enrolled males ≥ 18 years under sup-
pressive ART with undetectable viral load for more than 
two years without virologic failure (Table 1). CD4+ T-cell 
counts at enrollment were above 500 cells/mm3, and 
 CD4+ T-cell count nadir was above 350 cells/mm3. 
MDDCT was performed in the study candidates after the 
first 48  weeks of the intervention period in three doses 
at baseline (time zero), fifteen days after the first dose, 
and 30  days after the first dose. There were two signifi-
cant deviations from the protocol (see Results section). 
All patients had undetectable viral load upon MDDCT 
administration except for the two protocol violators (P24 
and P26, Table 1), which were viremic and not receiving 
ART during MDDCT administration.

To avoid any effect of auranofin and nicotinamide on 
MDDC function, auranofin was interrupted 24  weeks 

before and nicotinamide immediately before the 
MDDCT.

MDDCT design
We designed personalized peptides for pulsing of 
MDDCs, following a multi-step approach for each 
study candidate. As a first step, each patient’s HIV-1 
gag sequence was characterized from peripheral blood 
mononuclear cell (PBMCs) DNA through the generation 
of genomic sequences after clonal amplification of viral 
strains through Next Generation Sequencing (NGS) and 
single genome amplification. For single genome amplifi-
cation, at least ten clones were generated per patient, as 
previously described [44]. In the second step, the HIV 
DNA sequences were translated to amino acid sequences. 
Briefly, the three frames of translation were aligned to the 
start of Gag in the HXB-2 reference sequence to deter-
mine the correct reading frame using Clustal-Omega 
[45]. The polypeptides obtained were edited by manual 
correction, i.e. tryptophans were used to replace spuri-
ous stop codons in the middle of the sequence. Clustal-
Omega was also used to create a consensus sequence. 
Additional alignments were then made using the pub-
lished aligned sequences to map the highly conserved 
regions of the consensus Gag sequences from each study 
subject.

In parallel, HLA haplotypes of the same individuals 
were sequenced. HLA A, B, C, and DR typing was done 
by sequence-specific oligonucleotide methodology using 
a LUMINEX 200 apparatus. Briefly, DNA was extracted 
from the buffy coat of EDTA- anticoagulated peripheral 
blood with the Qiamp DNA mini kit (Qiagen) and sub-
jected to One lambda LAbtype SSO (Thermo Fisher) 
according to the manufacturers’ instructions.

Finally, the selection of HIV-1 Gag epitopes was per-
formed by designing peptides from the autologous HIV 
gag sequence and selecting those predicted to be rec-
ognized by each individual’s MHC Class I and Class II. 
The epitopes were predicted using the NetMHCpan 
v4.0 server [46], which displays an overall accumulated 
prediction ranking score of 49–78 [47]), as calculated 
between 2018 and 2021 by The Immune Epitope Data-
base (IEDB) [48]). A number of peptides were selected in 
positions encompassing amino acids 256–377 of the Gag 
polypeptide. Those peptides containing more than one 
cysteine were discarded wherever possible to avoid inter-
nal disulfide bonds. The number of peptides designed for 
each candidate depended on the patients’ affinity for mul-
tiple HLA epitopes. Therefore, the higher the number of 
HLAs predicted to be bound by each peptide, the lower 
the number of Gag peptides for each candidate. Also, the 
number of peptides was chosen to keep the immunizing 
stimuli to a minimum. For example, peptides predicted 
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to bind to multiple HLA haplotypes were preferred 
over those recognized by a single epitope: to minimize 
the synthesis costs and to ensure the maximum level of 
sequence conservation, preference was given to those 
peptides recognized by the haplotypes of more than one 
individual. For individuals for whom at least two peptides 
theoretically binding with high-affinity to more than one 
of their haplotypes were not found, a higher number of 
peptides, including peptides outside those above men-
tioned highly conserved regions, were designed, in order 
to increase the likelihood of immune recognition. In this 
manner, we designed 2 to 6 peptides (9-mers) per can-
didate, as shown in Additional file  11: Table  S1. After 
MDDCT administration, NetMHCpan predictions were 
reanalyzed using the newly developed Custommune 
software [49]), which is validated based on documented 
biological data from the Los Alamos database [50]). The 
results were used to stratify patients’ ex-post based on 
the concordance between software predictions [51].

Peptide synthesis
An automatic desktop synthesizer (PSSM 8 of Shimadzu) 
was used for the simultaneous solid-phase synthesis of 
all peptides using the Fmoc procedure. The final pep-
tides were “unprotected” in TFA and purified by HPLC 
semi-preparation using an Econosil C-18 column (10 μm, 
22.5 × 250  mm) and a system of two solvents: (A) tri-
fluoroacetic acid (TFA)/H2O (1: 1000) and (B) TFA/
acetonitrile (ACN)/H2O (1: 900: 100). The column was 
eluted at a flow rate of 8 mL/min with a gradient of 0 to 
80% of solvent B for 45 min. The HPLC analysis was done 
using a binary HPLC system made by Shimadzu with a 
UV–vis detector SPD-10AV (Shimadzu), coupled to 
an Ultrasphere C-18 column (5 μm, 4.6 × 150 mm) that 
was eluted with system solvents A1 (TFA/H2O, 1: 1000) 
and B1 (ACN/H2O/TFA, 900: 100: 1) at a flow rate of 
1.0 mL/min and a gradient of 10–80% of B1 for 10 min. 
The eluates of the HPLC columns were monitored for 
their absorbance at 220  nm. The molecular weight and 
the purity of the synthesized proteins were verified by 
electron spray (LC/MS-2010 Shimadzu). The number of 
peptides was determined by analyzing the amino acids 
(Shimadzu).

MDDC production
The collection of MDDC precursor cells was carried out 
by leukapheresis with the cell separator Terumo Cobe 
Spectra at the Blood Center of São Paulo, São Paulo, Bra-
zil. The total blood volume was calculated for each par-
ticipant, and 1.5 total blood volumes were processed, 
in peripheral venous access, with continuous flow, at a 
speed of 50–60 mL/min. After the end of the collection, 
the leukapheresis product was sent to the Retrovirology 

Laboratory of the Federal University of Sao Paulo for 
the separation of monocytes and subsequent differen-
tiation into DCs. Mononuclear cells from leukapheresis 
products were separated by Ficoll-Hypaque Premium 
(GE Healthcare® BioSciences, PA, USA) density gradi-
ent centrifugation and were cryopreserved in aliquots 
of 5 ×  107 cells/mL in liquid nitrogen using fetal bovine 
serum (FBS; Gibco Life Technologies®, CA, USA) with 
10% dimethyl sulfoxide (DMSO; Merck, Darmstadt, HE, 
DEU) until further assays were performed. Before use, 
cells were thawed at 37 °C in a water bath and seeded at 
5 ×  106/mL in 175  cm2 tissue culture flasks (Corning®—
Merck, Darmstadt, HE, DEU) in RPMI 1640 medium 
(Gibco Life Technologies) for two h at 37 °C in a 5%  CO2 
incubator to obtain adherence-isolated monocytes. After 
incubation, non-adherent cells were removed by wash-
ing, and the remaining cells (predominantly monocytes) 
were differentiated in MDDCs. To this aim, we compared 
two different procedures to select and optimize the most 
efficient protocol. In particular, we compared a protocol 
using IL-4 initially and GM-CSF followed by TNF, IL-1β, 
and IL-6 (henceforth, IL-4 protocol; Additional file 1: Fig. 
S1A) with a protocol using IFN-α initially and GM-CSF, 
followed by LPS (henceforth, IFN-α protocol; Additional 
file  1: Fig. S1B). Briefly, in the IL-4 protocol, adher-
ent cells were cultured in AIM-V medium (Therapeu-
tic Grade – Gibco Life Technologies) in the presence of 
50 ng/ml recombinant human Granulocyte–macrophage 
colony-stimulating factor (GM-CSF; Cell-Genix®, NH, 
USA) and 50  ng/ml recombinant human IL-4 (Cell-
GenixR, NH, USA) for five days, so as to obtain imma-
ture MDDCs (iMDDCs). On day 5, iMDDCs were pulsed 
with a pool of personalized HIV peptides that was added 
to the cells (0.2  µg/mL each peptide) overnight. Later, 
the cells were washed to remove unbound peptide par-
ticles and were cultured for an additional two days in 
an AIM-V medium supplemented with the maturation 
cytokines IL-6 (100  ng/ml), IL-1β (10  ng/ml), and TNF 
(50 ng/ml), plus GM-CSF (50 ng/ml) and IL-4 (50 ng/ml; 
all from Cell-Genix), to obtain mature MDDCs (mMD-
DCs) pulsed with autologous peptides (Additional file 1: 
Fig. S1A).

In the IFN-α protocol, adherent cells were cultured in 
AIM-V medium to which GM-CSF and 500 IU/mL IFN-
α-2b (Miltenyi Biotec, Auburn, CA, USA) were added on 
days 0 and 1 to obtain iMDDCs. On day 2, a pool of per-
sonalized HIV peptides was added to the cells (0.2 µg/mL 
each peptide) overnight. The following day, six h before 
cell harvest, maturation of iMDDCs was induced by add-
ing 5  IU/mL lipopolysaccharide (LPS-SM, Ultrapure 
InvivoGen, San Diego, CA, USA). After the incubation 
period, mMDDCs were recovered on ice and washed 
three times with sodium chloride solution (0.9% NaCl, 
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USP grade; Hospira, Lake Forest, IL) (Additional file  1: 
Fig. S1B).

Before reinfusion in patients, both iMDDCs and the 
final MDDCT were subjected to quality controls and 
immunophenotyping by flow cytometry analysis. For val-
idation tests of DC maturation protocols, cell mortality 
was assessed using the cell viability kit (BD Biosciences) 
according to the manufacturer’s recommendations. For 
assessing the viability of MDDCs before MDDCT admin-
istration, the amine-reactive fixable LIVE/DEAD stain 
(Gibco Life Technologies, OR, USA) was used, by stain-
ing for 30  min at 4  °C. For further staining, after thor-
ough washing with phosphate-buffered saline (PBS), 
cells were incubated for 20 min at 4 °C and assayed using 
the following monoclonal antibody panel: CD11c APC 
or V450 (clone B-ly6), CD14 Pacific Blue (clone M5E2), 
HLA-DR FITC (clone G46–6), CD80 PE (clone L307.4), 
CD86 FITC (clone 2331 FUN-1) and CCR7 PerCP 
(clone 150,503). All the mAbs were obtained from BD 
Biosciences®, CA, USA, except CCR7 (R&D Systems®, 
MN, USA). Subsequently, cells were washed with FACS 
buffer (0.2% albumin and 0.1% sodium azide in PBS) and 
then fixed with 2% paraformaldehyde in PBS. Data were 
acquired on an LSR Fortessa Flow Cytometer (BD Bio-
sciences) using the DIVA software, and the analysis was 
performed with FlowJo vX 0.7 software (Tree Star®, OR, 
USA).

MDDCT immunogenicity analysis
The effect of MDDCT on specific anti-HIV immune 
response in treated patients was assessed in patients’ 
PBMCs collected from total blood on days 0, 15, 30 (i.e., 
upon each dose of therapeutic immunization), and 120 
(i.e., post-immunization follow-up). Total blood was 
drawn before each MDDCT dose to avoid confounding 
effects of MDDCT on each baseline. For this purpose, 
cells were plated at a concentration of 1 ×  106/mL in 
96-well round-bottomed plates in 200  μl of RPMI 1640 
medium plus 10% FBS. Cells were either left unstimu-
lated or incubated with 1  μg/mL of personalized pep-
tides for 48 h in an incubator at 37  °C and 5%  CO2. Six 
hours before cell harvest, the positive control wells  (C+) 
were stimulated with 1  μg/mL staphylococcal entero-
toxin B (SEB, Merck OR, USA). After one h stimulation 
with SEB, 20  μg/mL of Brefeldin A (BFA, Merck) was 
added to the plate to block any further protein transport. 
Background controls  (C−) consisted of PBMCs cultured 
in the absence of peptides and were used as blank, i.e., 
subtracted from the percentage of cytokine-producing 
lymphocytes obtained from wells incubated with the 
peptides. To evaluate immune responses/activation, 
PBMCs were first fixed and permeabilized using the 
Cytofix/Cytoperm and Perm/Wash kits (BD Biosciences 

CA, USA), following the manufacturer’s recommenda-
tions. Cells were then incubated with a fixable live/dead 
stain (Gibco Life Technologies OR, USA) to check their 
viability and stained with a panel of antibodies includ-
ing α-CD3 (V450; clone UCHT1), α-CD4 (BV605; clone 
RPA-T4), and α-CD8 (APC-H7; clone SK1) as well as 
antibodies against the intracellular cytokines IFN-γ 
(PerCP-Cy5.5; clone B27), TNF (PE-Cy7; clone MAb11), 
and IL-2 (FITC; clone MQ1–17H12) (all from BD Bio-
sciences CA, USA). Data acquisition was performed on 
an LSR Fortessa Flow Cytometer, using the DIVA soft-
ware, and the analysis was performed with FlowJo vX 0.7. 
All samples and controls were analyzed in triplicate.

IFN-γ measurement in serum
Patient serum samples were collected upon administra-
tion of the first MDDCT dose (day 0), upon dose 2 (day 
15), and dose three administration (day 30). The level 
of IFN-γ was measured using an ELISA technique fol-
lowing the guidelines provided by the manufacturer of 
the kit (BD OptEIA™ Human IFN-γ ELISA Set—BD 
Biosciences®).

Proviral DNA quantitation in rectal biopsies
Viral DNA was measured to estimate the viral reservoir 
by qPCR as previously described [52–54].

Data analysis
Comparisons between two groups were conducted by 
chi-square testing, relative risk analysis and non-para-
metric Wilcoxon test. Comparisons between more than 
two groups were conducted by one-way ANOVA, fol-
lowed by Dunnet’s post-test, or by two-way ANOVA 
followed by Tukey’s post-test. When appropriate, a logit 
transformation was applied to the data to restore normal-
ity before the statistical test. To allow for paired statistical 
analysis of the differences, patients with a missing value 
in a time point were excluded from that specific statisti-
cal analysis, but all available values were included when 
plotting the overall data. All analyses were conducted 
using the Prism v.6 software (GraphPad® Software Inc, 
CA, USA).

Results
Optimization of MDDCT production
To optimize the preparation of MDDCs, we initially 
tested two different protocols (i.e., IL-4 based and IFN-α 
based) in terms of differentiation and maturation (Addi-
tional file 1: Fig. S1). The protocol based on IFN-α proved 
more effective when differentiating MDDCs from frozen 
PBMCs, leading to higher cell viability (Additional file 2: 
Fig. S2). Moreover, when comparing the phenotypic dif-
ferentiation profile of DCs, the protocol based on IFN-α 
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was associated with higher expression of the costimula-
tory molecule CD80 (Additional file  3: Fig. S3). In light 
of this evidence, the IFN-α-based protocol was adopted 
for the present study. Finally, we compared the viability of 
DCs differentiated after thawing of frozen PBMCs to that 
of DCs frozen after isolation. Despite its potential advan-
tages in streamlining the protocol, the use of frozen DCs 
was associated with lower viability and deemed subopti-
mal for further use (data not shown).

Overall, these results support the differentiation 
of MDDCs based on FBS-frozen PBMCs and the use 
of IFN-α as the optimal protocol for our MDDCT 
production.

Phenotypic analysis of MDDCs used for MDDCT
We then examined by flow cytometry the phenotypic 
characteristics of MDDCs used for MDDCT admin-
istration (Fig.  1). The characteristics of the enrolled 
patients are detailed in Table 1. The gating strategy used 
for the analysis is depicted in Additional file  4: Fig. S4. 
The induction of maturation, a prerequisite of MDDCT 
administration (Additional file  1: Fig. S1), was associ-
ated, as expected, with increased expression of the acti-
vation/maturation markers HLA-DR, CD80, CD86, and 
CCR7 (Fig. 1). While the expression of CD80 and HLA-
DR marks DC activation, but can also be upregulated 
by tolerogenic DCs, the expression CD83 and CD86 
is a marker of mature DCs, supporting the effect of the 
protocol in specifically inducing DC maturation [55]. 
Moreover, the viability of MDDCs used for MDDCT was 
similar throughout the three doses administered (median 
viability > 90% for all doses) except for a small, albeit sig-
nificant decrease observed in MMDDCs administered 
during the second dose (Fig. 2A, B).

Administration of peptide-pulsed MDCCs is associated 
with T-cell responses
Each dose of the autologous, personalized MDDCT 
was then administered to 10 chronically HIV-1-infected 
individuals. A total of  107 cells were administered per 
infusion. No adverse effects were observed upon vac-
cine administration. To evaluate the immunogenicity of 
MDDCT, we examined by flow cytometry the peptide-
specific functional T-cell responses in  vitro, following 
the gating strategy depicted in Additional file 5: Fig. S5. 
The results showed increased production, in both  CD4+ 
and  CD8+ T lymphocytes, of IFN-γ, IL-2, and TNF. This 
upregulated cytokine production peaked upon adminis-
tration of dose 3 of the MDDCT and was then reverted 
during the post-therapy follow-up (Fig. 3). Of note, this 
increase was not observed in matched positive con-
trol samples after stimulation with SEB or in unstimu-
lated samples. (Additional files 6, 7: Fig.s S6, S7), thus 

Fig. 1 Phenotypic characterization of immature and mature 
MDDCs used for MDDCT. Panels A,B) PBMCs were isolated from 
the total blood of the enrolled individuals and induced to MDDC 
differentiation/maturation as depicted in Additional file 1: Fig. S1. 
Both immature MDDCs (iMDDC) and mature MDDCs (mMDDCs) 
were analyzed by flow cytometry for the expression of the activation/
maturation markers HLA‑DR, CD80, CD86, CD83, CD40, and CCR7 
according to the gating strategy depicted in Additional file 1: Fig. S7A. 
Box plots and whiskers represent the median fluorescence intensity 
of each marker (A) or the percentage of cells expressing each marker 
(B). Data are expressed as median ± min/max and were analyzed by 
the non‑parametric Wilcoxon test (N of patients = 10).** p < 0.01
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supporting a specific effect of the MDDCT in inducing 
response to the peptide stimulus. We also performed 
qualitative analyses evaluating the number of study vol-
unteers who responded to the MDDCT, comparing the 
cytokine levels at baseline (day zero) to the cytokine 
increment on day 15, day 30, and day 120. We chose an 
arbitrary increase of at least 50% in the cytokine lev-
els upon MDDCT from baseline to define an MDDCT 
response and compared the results of in-vitro peptide-
stimulated and unstimulated cells (Table 2). The analysis 
showed a significant increase in cytokine production in 
cells stimulated ex vivo with Gag-derived peptides com-
pared to unstimulated cells, suggesting a high proportion 
of immune responders among individuals subjected to 
MDDCT (Table 2).

Moreover, the responses in individuals receiving MDDCT 
only were generally similar to those receiving MDDCT and 
conditioning regimen, further supporting a specific immu-
nogenic effect of MDDCT (Additional file 8: Fig. S8). The 
only exception was a significant increase in  CD8++  TNF++ 
cells among patients receiving MDDCT and condioning 
regimen at 30 days post-first MDDCT administration. On 
the other hand, when IFN- γ levels were measured in serum, 
a trend toward a significant increase over time was observed 
in those individuals who had received the MDDCT after the 
auranofin/nicotinamide conditioning regimen (Additional 
file 9: Fig. S9) notwithstanding the short half-life and stabil-
ity of this cytokine in serum [56].

To further characterize the immunogenicity of 
the MDDCT, we evaluated peptide-specific T-cell 

Fig. 2 Viability of MDDCs used for each MDDCT dose preparation. Viability was assessed by flow cytometry following staining with a LIVE/DEAD 
fixable stain according to the gating strategy shown in (A). The horizontal line in the graph of panel B indicates the median (N of patients for each 
dose = 10). Data were analyzed by Two‑Way ANOVA. * p < 0.05
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polyfunctional responses, which have been previously 
described as correlates of immune control of the infec-
tion [57]. Polyfunctionality was assessed by flow cytom-
etry in the PBMCs obtained after each MDDCT dose, 
after 48 h of cultivation with autologous peptides, using 
the gating strategy depicted in Additional file 5: Fig. S5. 
Our results showed an increase in the frequency of  CD4+ 

T-lymphocytes characterized by simultaneous expression 
of at least two of the three cytokines analyzed (i.e., IFN-γ, 
IL-2, and TNF) (Fig. 4A). In line with this, within the bulk 
of the cytokine-producing  CD4+ T-cells, the proportion 
expressing only one of the three cytokines decreased sig-
nificantly from the second to the third MDDCT dose. A 
similar, although less evident, result was observed when 

Fig. 3 Immunogenicity of MDDCT. Ten recipients (Table 1) received three doses of the personalized MDDCT. PBMCs were collected upon 
administration of the first MDDCT dose (day 0), upon dose 2 (day 15), and dose 3 administration (day 30), as well as during the post‑therapy 
follow‑up (day 120). Isolated PBMCs were stimulated in vitro with the autologous Gag peptides that were used for MDDCT. Production of IFN‑γ, IL‑2, 
and TNF by  CD4+ and  CD8+ T‑lymphocytes was evaluated by flow cytometry. After applying the logit transformation to restore normality, data of 
patients for whom all time points were available for a given cytokine were analyzed by one‑way ANOVA followed by Dunnet’s post‑test. *p < 0.05; 
**p < 0.01; ***p < 0.001
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analyzing  CD8+ T-cells (Fig.  4B). Although the multi-
ple-comparison post-test (Tukey) could not highlight 
significant differences over time, the two-way ANOVA 

test adopted did recognize the positivity to one- or mul-
tiple-cytokines as the main source of variation (P < 0.01). 
When the types of cytokines produced by the T-cells 

Table 2 The proportion of responders among MDDCT recipients at each time point post‑MDDCT

The data used to calculate responses are shown in Fig. 3 and Additional file 7: Fig. S7. For each condition/cytokine, a responder was defined by a ≥ 50% increase in 
the percentage of cytokine production as compared to baseline (i.e. day 0). Chi-square analysis was performed using pooled data of all cytokines and comparing the 
proportion of responders in peptide-stimulated cells vs unstimulated cells of the same individuals

Cytokine and comparison Proportion of post-vaccination responders Chi-Square (peptide 
stimulated vs 
unstimulated)Peptide stimulated Unstimulated

Day 15 vs day 0 CD4+ T‑cells CD8+ T‑cells CD4+ T‑cells CD8+ T‑cells p < 0.00001

 IL‑2 8/10 6/10 3/10 2/10

 TNF 5/10 9/10 5/10 3/10

 IFN‑γ 5/9 4/10 0/10 1/10

Day 30 vs day 0 CD4+ T‑cells CD8+ T‑cells CD4+ T‑cells CD8+ T‑cells p < 0.00001

 IL‑2 6/9 7/10 2/9 3/9

 TNF 9/10 8/10 3/10 2/10

 IFN‑γ 8/10 4/10 2/10 2/10

Day 120 vs day 0 CD4+ T‑cells CD8+ T‑cells CD4+ T‑cells CD8+ T‑cells p < 0.017

 IL‑2 5/9 1/9 2/9 0/9

 TNF 5/9 2 /9 2/9 3/8

 IFN‑γ 5/9 4/9 2/9 2/9

Fig. 4 Frequency of polyfunctional  CD4+ and  CD8+ T‑lymphocytes following MDDCT. PBMCs were collected upon administration of the first 
MDDCT dose (day 0), upon dose 2 (day 15), and dose 3 administration (day 30), as well as during the post‑therapy follow‑up (day 120). Isolated 
PBMCs were stimulated in vitro with the autologous Gag peptides that were used for MDDCT. Production of IFN‑γ, IL‑2, and TNF by  CD4+ and  CD8+ 
T‑lymphocytes was evaluated by flow cytometry. Panels A,B) Frequency of cells expressing one or more immune‑mediator cytokine (IL‑2, TNF and 
IFN‑γ). Pie charts show the relative percentage, among cells expressing at least one cytokine, of  CD4+ (A) and  CD8+ (B) T‑lymphocytes expressing 
one, two, or three cytokines. Panels C, D) Bar graphs showing the absolute frequency of  CD4+ (C) and  CD8+ (D) T‑lymphocytes expressing each 
cytokine combination analyzed. Data are expressed as mean ± SD and were analyzed by two‑way ANOVA. (N of patients for each dose = 10)
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were analyzed separately, there was a significant increase 
in  TNF+ IFN-γ+  CD4+ T-cells upon dose two compared 
to baseline (Fig. 4C). Again, this difference was not vis-
ible in CD8 + T-cells (Fig. 4D). To explore whether time 
on suppressive ART might correlate with MDDCT 
response, we compared cytokine responses between 
groups of individuals under long-term suppressive ART 
(i.e. > 10 years of suppressive ART) and individuals under 
mid/short term suppressive ART (i.e. < 10  years). The 
results showed comparable responses between the two 
groups (Additional file 10: Fig. S10).

Taken together, these data indicate that MDDCT can 
evoke peptide-specific immune responses, potentially 
increasing T-cell polyfunctionality during the MDDCT 
period.

MDDCT with highly conserved Gag peptides is associated 
with virologic response
We then evaluated the virologic response to MDDCT and 
its possible correlates in order to estimate the feasibility 
of analytical treatment interruption (ATI) in MDDCT 
recipients. To this aim, we performed an interim analy-
sis of viral DNA in rectal biopsies (RB) in the individuals 
subjected to MDDCT. We chose this tissue since DNA in 
RB strongly correlates with immune-mediated control of 
viral load in the absence of ART [58]. The results showed 
that two subjects, P27 and P29 (Table 1), displayed unde-
tectable viral DNA in RB [59]. Of note, both subjects 
had detectable viral DNA in RB at baseline, supporting 
an effect of the treatment in reducing viral burden. Both 
individuals with undetectable HIV DNA belonged to 
the group that had received both the conditioning regi-
men and the MDDCT (Table 1). However, the difference 
in the proportion of individuals displaying undetectable 
viral DNA was not significant between the two groups of 
MDDCT recipients [Groups 5 and 6 (P = 0.4286, inten-
tion-to-treat analysis; P = 0.4444, per-protocol analysis; 
Fisher’s exact test)] [59]. These analyses (both intention-
to-treat and per-protocol analysis) were performed to 
rule out the contribution, to the final result, of two proto-
col violators (P24 and P26), who, before MDDCT admin-
istration, had suspended ART unbeknown to the study 
investigators.

To understand the correlates of viral DNA abatement, 
we then analyzed the accuracy of the predictions of Net-
MHCpan using a newly developed software (Custom-
mune: www. custo mmune. com; [51]). This software is 
based on peptide affinity calculations and selects only 
those peptides in positions corresponding to epitopes 
validated by biological data for the matched HLA. Inter-
estingly, the subjects displaying undetectable viral DNA 
were the only two patients whose entire set of peptides 
was validated by Custommune against biological data for 

effective HLA binding (LosAlamos database) (P = 0.0157, 
intention-to-treat analysis; P = 0.0350, per-protocol anal-
ysis; Chi-square) (Fig. 5).

Discussion
The present study shows the feasibility of using a per-
sonalized Gag-based MDDCT to increase the adaptive 
immune response against HIV in patients undergoing 
suppressive ART for prolonged periods. In particular, 
epitopes from highly conserved sequences of the Gag 
region of HIV could be ideal candidates if they are admin-
istered following an appropriate conditioning regimen.

Fig. 5 The proportion of patients displaying an undetectable HIV‑1 
DNA level in rectal biopsies at the end of all treatments. Panels 
A,B) MDDCT recipients were subjected to rectal biopsy before 
all investigational interventions (baseline) and at the end of all 
treatments. Patients were stratified based on the concordance (or lack 
thereof, i.e. concordance for 50% or less of the epitopes administered) 
of predicted epitopes between the online tools NetMHCpan (http:// 
www. cbs. dtu. dk/ servi ces/ NetMH Cpan/) and Custommune (www. 
custo mmune. com). The relative risk (RR) is referred to the risk of 
having detectable viral DNA as calculated by intention‑to‑treat (A) 
and per‑treatment (B) analysis

http://www.custommune.com
http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.custommune.com
http://www.custommune.com
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A previous report of post-treatment control of viremia 
in two macaques infected with the HIV homolog SIV-
mac251 [60] may help clarify the results of the present 
study. The macaques had received ART in combination 
with an experimental treatment with immune-modu-
lating drugs. Although the virus was not eradicated, the 
macaques showed, upon suspension of all therapies, 
control of viremia, which was associated with anti-Gag 
cell-mediated immunity [60]. The most robust immune 
responses were directed against an amino acid sequence 
highly conserved in both human and simian lentiviruses 
 (Gag256-377; amino acid numbering is according to the 
HIV Gag epitope map in the Los Alamos HIV database: 
https:// www. hiv. lanl. gov/ conte nt/ immun ology/ maps/ 
ctl/ Gag. html; accessed 8 June 2019). Also, in the present 
study, the sequences of the epitopes used to immunize 
the subjects who eventually displayed an undetectable 
viral DNA mapped to the highly conserved portion of 
p24 that is homologous to that identified in the post-
treatment controller macaques.

Interestingly, the highly conserved sequence of Gag 
associated with immune control corresponds to a portion 
of the protein responsible for multimerization. Further-
more, assembly of p24 displays a recursive pattern with 
the hexamer being the fundamental unit and hexamers 
of hexamers being necessary for further assembly of the 
capsid structure [34]. Thus, the constraints to which this 
protein portion is subjected may limit the development 
of viable immune escape mutants.

It is conceivable that the conditioning regimen to which 
the study subjects had been subjected before MDDCT 
administration eventually contributed to the result 
obtained. On the other hand, we were not able to corre-
late the duration time of suppressive ART with MDDCT 
function.

It is known that immune control of HIV infection 
correlates with the quality of the specific response of 
T-lymphocytes to the antigens [19]. Thus, HIV elite 
controllers and slow progressors often display HIV-spe-
cific  CD8+ T-lymphocytes capable of producing multi-
ple cytokines and capable of proliferating in response 
to the antigen. In particular, CD4+ T-lymphocytes 
express high amounts of IFN-γ and IL-2 in response to 
HIV peptides [20]. Thus, to measure the immunogenic-
ity of MDDCT, we chose to measure IFN-γ, IL-2, and 
TNF intracellularly in  CD4+ and  CD8+ T-lymphocytes 
at baseline and after MDDCT dosing. The number of 
candidates that increased in  vitro the cytokine levels 
in  CD4+ and  CD8+ T cells upon stimulation with Gag 
peptides from baseline to days 15 and from baseline 
to days 30 and days 120 after MDDCT was significant 
as compared to Gag unstimulated response, providing 

evidence for immunogenicity of the intervention. 
Also, the increment of single-cytokine producing cells 
occurred consistently when IL-2, TNF, and IFN-γ were 
measured in  CD4+ and  CD8+ T-cells, showing induc-
tion of an immunological reaction to the MDDCT 
adopted in the present study. The confirmation that 
MDDCT was associated with immune reactivity resides 
in the fact that cytokine production occurred after 
MDDCT. At 120 days after MDDCT, there was a trend 
to a decrease in the levels of intracellular cytokines 
levels comparable to baseline. The monofunctional 
analysis of the quantification of interleukins some-
what reinforces the concept that the adaptive immune 
response to HIV disappears among patients undergoing 
suppressive ART due to the lack of sustained antigenic 
presentation, suggesting that the immune reinforce-
ment in these patients was essential for surveillance 
and elimination of infected cells. In this regard, also the 
maturation of MDDCs in vitro may have played a role. 
Thus, the phenotyping and immunogenicity data sug-
gest that the MDDCT adopted in the present study has 
an immunostimulatory potential to generate an inflam-
matory cellular response to HIV and can constitute an 
important additional intervention in strategies aimed at 
achieving the elimination of the infected cells.

While the correlates of immune protection from 
HIV-1 progression are not fully understood, polyfunc-
tional immune responses seem to play an important 
role as suggested by direct evidence on individuals 
exposed to HIV-1 [61], HIV-1 infected non-progressors 
[62], and by the association of polyfunctional responses 
with a lower HIV viral set point [63].

As a weakness in the study’s design, we recognize the 
absence of an immunogenicity analysis between the 
application of the last MDDCT dose (day 30) and the 
sample collected on day 120 which would have allowed 
better evaluation of the effect last MDDCT dose. More-
over, MDDCs displayed significantly increased markers 
of maturation but not of CD14, which is an important 
marker of differentiation of these cells. In addition, 
although intracellular IL-2 levels may be considered 
a surrogate marker of T cell proliferative ability [64], 
we have not been able to explore T cell expansion and 
degranulation markers in this pilot study to further 
confirm the generation of MDDCT-related memory 
immune responses. Although there was a trend towards 
an increase in simultaneous production of at least two 
of these cytokines after MDDCT administration in 
 CD4+ and  CD8+ T-lymphocytes, the numerosity of the 
treatment group did not allow drawing definitive con-
clusions on this aspect. Therefore, the limited number 
of study subjects warrants further testing of the present 
study in a more significant number of individuals.

https://www.hiv.lanl.gov/content/immunology/maps/ctl/Gag.html
https://www.hiv.lanl.gov/content/immunology/maps/ctl/Gag.html
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Conclusions
This study establishes a novel clinical workflow for per-
sonalized MDDCT aimed at targeting HIV-1 reservoirs 
using a personalized strategy. This strategy combines 
each individual’s genetic profile and the Gag protein of 
autologous HIV-1, therefore, providing a proof-of-con-
cept of its potential immunogenicity and efficacy.

Supplementary Information
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 Additional file 1: Fig. S1. Schematic workflow of the protocols used for 
the maturation of MDDCs and MDDCT preparation. Maturation of MDDCs 
from monocytes was induced using either a cytokine cocktail based 
on IL‑4 (longer protocol; Panel A) or a cytokine cocktail based on IFN‑α 
(shorter protocol; Panel B). 

Additional file 2: Fig. S2. Representative example of the viability of 
MDDCs under different maturation protocols and conditions. MDDCs 
were isolated from PBMCs and induced to maturation according to two 
protocols based on IL‑4 and IFN‑α as depicted in Additional file 1: Fig. S1. 
Maturation of MDDCs was performed starting from either freshly collected 
PBMCs (red bars) or PBMCs frozen in liquid nitrogen upon collection and 
thawed after 2 weeks. Viability was assessed by flow cytometry using a 
LIVE/DEAD stain. Data were normalized over the fresh‑cell condition. 

Additional file 3: Fig. S3. Representative example of the maturation 
profile of MDDCs subjected to alternative differentiation and freezing 
protocols. MDDCs were isolated from PBMCs and induced to maturation 
according to two protocols based on IL‑4 and IFN‑α as depicted in Addi‑
tional file 1: Fig. S1. Maturation/activation markers CD80 and HLA‑DR were 
analyzed by flow cytometry in cells isolated from fresh PBMCs or from 
PBMCs thawed after freezing using FBS or a specific freezing medium (as 
described in the Methods section). 

Additional file 4: Fig. S4. Gating strategy employed to analyze matura‑
tion markers of MDDCs 

Additional file 5: Fig. S5. Gating strategy employed to analyze cytokine 
production in T‑lymphocytes. Panels A, B. Cytokine production was 
determined in cells left unstimulated (A) or stimulated ex‑vivo with the 
cell therapy peptides (B). 

Additional file 6: Fig. S6. Cytokine expression in SEB/brefeldin‑stimulated 
 CD4+ and  CD8+ T‑lymphocytes following MDDC MDDCT. Data were 
obtained as described in Fig. 3. 

Additional file 7: Fig. S7. Cytokine expression in unstimulated  CD4+ and 
 CD8+ T‑lymphocytes following MDDC MDDCT. Data were obtained as 
described in Fig. 3. 

Additional file 8: Fig. S8. Inter‑group comparison of the immunogenic‑
ity of MDDCT. Comparison of the levels of IFN‑γ, IL‑2, and TNF production 
levels by CD4+ and CD8+ T‑cells in individuals receiving MDDCT only (G5) 
and individuals receiving MDDCT with nicotinamide and auranofin (G6). 
Data were analyzed by one‑way ANOVA followed by Dunn´s post‑test. 
*p < 0.05. 

Additional file 9: Fig. S9. Impact of MDDCT on the level of IFN‑ γ in 
plasma. The Fig. shows the level of IFN‑γ in individuals receiving the per‑
sonalized dendritic‑cell therapy (DCT), alone (G5, in black) or following the 
conditioning regimen consisting of auranofin + nicotinamide (G6, in blue). 
IFN‑gamma was measured by ELISA testing, and data were analyzed by 
two‑way ANOVA. The P‑value reported refers to the interaction between 
time and the previous conditioning regimen. 

Additional file 10: Fig. S10. Impact of the time on ART on cytokine 
production post‑MDDCT. The graph visualizes the relation between the 
time in days since the first MDDCT dose and the expression of immune 
response mediating cytokines in  CD4+ (Panel A) and  CD8+ (Panel B) 

T‑cells. Patients were stratified into two categories based on the overall 
time of ART administration since their diagnosis (i.e. > 10 years, “long” 
and < 10 years, “mid/short”). The lines on the graph represent linear regres‑
sion slopes for each group, and the gray areas indicate 95% confidence 
intervals for each line. 

Additional file 11: Table S1. List of peptides used for pulsing MDDCs of 
each individual. Enneamers (9 mers) were designed according to their 
predicted immunogenicity in a given individual, as described in the main 
text. Peptides were then used to pulse MDDCs before their reinfusion in 
MDDCT recipients according to the workflow depicted in Additional file 1: 
Fig. S1. Note that some autologous peptides are common to more than 
one patient.
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