68 research outputs found

    Modeling human pancreatic beta cell dedifferentiation

    Get PDF
    Objective: Dedifferentiation could explain reduced functional pancreatic ÎÂČ-cell mass in type 2 diabetes (T2D). Methods: Here we model human ÎÂČ-cell dedifferentiation using growth factor stimulation in the human ÎÂČ-cell line, EndoC-ÎÂČH1, and human pancreatic islets. Results: Fibroblast growth factor 2 (FGF2) treatment reduced expression of ÎÂČ-cell markers, (INS, MAFB, SLC2A2, SLC30A8, and GCK) and activated ectopic expression of MYC, HES1, SOX9, and NEUROG3. FGF2-induced dedifferentiation was time- and dose-dependent and reversible upon wash-out. Furthermore, FGF2 treatment induced expression of TNFRSF11B, a decoy receptor for RANKL and protected ÎÂČ-cells against RANKL signaling. Finally, analyses of transcriptomic data revealed increased FGF2 expression in ductal, endothelial, and stellate cells in pancreas from T2D patients, whereas FGFR1, SOX,9 and HES1 expression increased in islets from T2D patients. Conclusions: We thus developed an FGF2-induced model of human ÎÂČ-cell dedifferentiation, identified new markers of dedifferentiation, and found evidence for increased pancreatic FGF2, FGFR1, and ÎÂČ-cell dedifferentiation in T2D

    Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic ÎČ-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I–related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies

    LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic ÎČ cells

    Get PDF
    Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ÎČ cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ÎČ cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ÎČ cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ÎČ cells to maintain appropriate insulin release

    LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic ÎČ cells

    Get PDF
    Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ÎČ cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ÎČ cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ÎČ cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ÎČ cells to maintain appropriate insulin release.</p

    RĂŽles de SOX9 dans la cellule ß pancrĂ©atique humaine

    No full text
    Le pancrĂ©as est une glande amphicrine composĂ©e de cellules exocrines et de cellules endocrines. Parmi les cellules endocrines, organisĂ©es en Ăźlot de Langerhans, les cellules ß sĂ©crĂ©trices d’insuline en rĂ©ponse Ă  des stimuli prĂ©cis, sont essentielles pour l’homĂ©ostasie du glucose. Des perturbations tant au niveau qualitatif qu’au niveau quantitatif sont responsables de diffĂ©rentes pathologies telles les diabĂštes ou certaines formes de tumeurs endocrines. De rĂ©centes publications suggĂšrent que l’état de diffĂ©renciation de la cellule ß pancrĂ©atique mature n’est pas immuable et montrent que le maintien d’un phĂ©notype mature de la cellule est un processus dynamique. DiffĂ©rents modĂšles de souris mutantes (avec perte ou gain d’un facteur de transcription) montrent une perte de l’identitĂ© de la cellule ß. Cette plasticitĂ© altĂšre la synthĂšse, le stockage et la sĂ©crĂ©tion d’insuline. En plus de la perte d’identitĂ©, caractĂ©risĂ©e par la diminution de l’expression de marqueurs de la cellule ß (MAFA, NKX6-1), les cellules rĂ©-expriment des marqueurs de progĂ©niteurs (NGN3, SOX9) : on parle de dĂ©diffĂ©renciation. Cette dĂ©diffĂ©renciation serait un mĂ©canisme clĂ© dans la diminution de la masse de cellules ß fonctionnelles au cours du diabĂšte de type 2. Le but de ma thĂšse a Ă©tĂ© d’étudier le rĂŽle du facteur de transcription SOX9 dans le contexte de la perte d’identitĂ© de la cellule ß humaine. SOX9 est exprimĂ© dans les progĂ©niteurs multipotents pancrĂ©atiques et joue plusieurs rĂŽles cruciaux au cours du dĂ©veloppement de l’organe. Bien qu’un rĂŽle important de SOX9 fut attribuĂ© au cours de l’organogĂ©nĂšse du pancrĂ©as, il y a de plus en plus de donnĂ©es suggĂ©rant qu’il a des rĂŽles additionnels dans le pancrĂ©as matures qui semble aussi importants que son rĂŽle au cours du dĂ©veloppement. C’est le cas notamment des cellules formant les canaux pancrĂ©atiques. D’un autre cĂŽtĂ©, pour les cellules endocrines, et plus particuliĂšrement les cellules ß, SOX9, normalement absent de la cellule ß saine, est rĂ©-exprimĂ© dans ces cellules dans des conditions pathologiques (diabĂštes, tumeurs neuroendocrines du pancrĂ©as). Une expression ectopique de SOX9 dans les cellules ß induit un phĂ©notype diabĂ©tique. Alors qu’il y a de plus en plus d’observation de l’expression de SOX9 dans la cellule ß, il y a trĂšs peu de connaissance sur les mĂ©canismes molĂ©culaires et les cibles de ce facteur de transcription dans les cellules ß humaines. Dans un premier temps, nous avons dissĂ©quĂ© diffĂ©rents mĂ©canismes impliquĂ©s dans l’induction de l’expression de SOX9. Pour cela, nous avons dĂ©veloppĂ© des conditions mimant des contextes pathologiques (diabĂštes, tumeurs neuroendocrines du pancrĂ©as VHL) en utilisant les cellules ß humaines EndoCßH1, rĂ©cemment dĂ©veloppĂ©es au sein du laboratoire. Dans un deuxiĂšme temps, nous avons dĂ©veloppĂ© des outils molĂ©culaires afin d’identifier les cibles de SOX9 dans la cellule ß humaine (dominant positif, dominant nĂ©gatif). Pour finir, nous avons analysĂ© les cibles potentielles de SOX9 dans diffĂ©rentes conditions pathologiques.No abstrac

    Numerical visualization of boundary layer transition when negative Magnus effect occurs

    Get PDF
    We previously identified the appearance of negative Magnus lift on a sphere rotating about an axis perpendicular to an incoming flow at a critical Reynolds number using large-eddy simulation and obtained the statistically time-averaged lift and pressure coefficients around the sphere. We have now numerically investigated the unsteady characteristics of the boundary layer around a rotating sphere at three Reynolds numbers (1.0 x 10^[4], 2.0 x 10^[5], and 1.14 x 10^[6]). At a Reynolds number in the subcritical or supercritical region, the direction of the lift force followed the Magnus effect independent of the rotational speed. In contrast, at the critical Reynolds number when a particular rotational speed was imposed, negative lift was observed and a boundary-layer transition occurred only on one side of the sphere, as indicated by the visualization of the vortical structures around the sphere. A change in these structures and a shift of the separation points along with a change in the Reynolds number or rotational speed of the sphere were investigated in the context of boundary layer transition by using visualization around the sphere

    Negative Magnus lift on a rotating sphere at around the critical Reynolds number

    Get PDF
    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 x 10^[4], 2.0 x 10^[5], and 1.14 x 10^[6]. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point

    Production and Characterization of Hydrophilic Heme Iron Preparation from Fish Blood

    No full text
    • 

    corecore