47 research outputs found

    Cutting improves the productivity of lucerne-rich stands used in the revegetation of degraded arable land in a semi-arid environment

    Get PDF
    Understanding the relationships between vegetative and environmental variables is important for revegetation and ecosystem management on the Loess Plateau, China. Lucerne (Medicago sativa L.) has been widely used in the region to improve revegetation, soil and water conservation, and to enhance livestock production. However, there is little information on how environmental factors influence long-term succession in lucerne-rich vegetation. Our objective was to identify the main environmental variables controlling the succession process in lucerne-rich vegetation such that native species are not suppressed after sowing on the Loess Plateau. Vegetation and soil surveys were performed in 31 lucerne fields (three lucerne fields without any management from 2003-2013 and 28 fields containing 11-year-old lucerne with one cutting each year). Time after planting was the most important factor affecting plant species succession. Cutting significantly affected revegetation characteristics, such as aboveground biomass, plant density and diversity. Soil moisture content, soil organic carbon, soil available phosphorus and slope aspect were key environmental factors affecting plant species composition and aboveground biomass, density and diversity. Long-term cutting can cause self-thinning in lucerne, maintain the stability of lucerne production and slow its degradation. For effective management of lucerne fields, phosphate fertilizer should be applied and cutting performed

    A dominant dwarf shrub increases diversity of herbaceous plant communities in a Trans-Himalayan rangeland

    Get PDF
    Plant communities are structured by both competition and facilitation. The interplay between the two interactions can vary depending on environmental factors, nature of stress, and plant traits. But, whether positive or negative interactions dominate in regions of high biotic and abiotic stress remains unclear.We studied herbaceous plant communities associated with a dwarf shrub Caragana versicolor in semi-arid, high altitude Trans Himalayan rangelands of Spiti, India. We surveyed 120 pairs of plots (within and outside shrub canopies) across four watersheds differing in altitude, aspect and dominant herbivores. Herbaceous communities within shrub canopies had 25% higher species richness, but similar abundance when compared to communities outside the canopy, with the shrub edge having higher diversity than the center of the canopy. Grasses and erect forbs showed positive associations with the shrub, while prostrate plants occurred at much lower abundance within the canopy. Rare species showed stronger positive associations with Caragana than abundant species. Experimental removal of herbaceous vegetation from within shrub canopies led to 42% increase in flowering in Caragana, indicating a cost to the host shrubs. Our study indicates a robust pattern of a dwarf shrub facilitating local community diversity across this alpine landscape, increasing diversity at the plot level, facilitating rare species, and yet incurring a cost to hosts from the presence of herbaceous plants. Given these large influences of this shrub on vegetation of these high altitude rangelands, we suggest that the shrub microhabitat be explicitly considered in any analyses of ecosystem health in such rangelands

    A biophysical approach using water deficit factor for daily estimations of evapotranspiration and CO<sub>2</sub> uptake in Mediterranean environments

    No full text
    Estimations of ecosystem-level evapotranspiration (ET) and CO2 uptake in water-limited environments are scarce and scaling up ground-level measurements is not straightforward. A biophysical approach using remote sensing (RS) and meteorological data (RS–Met) is adjusted to extreme high-energy water-limited Mediterranean ecosystems that suffer from continuous stress conditions to provide daily estimations of ET and CO2 uptake (measured as gross primary production, GPP) at a spatial resolution of 250 m. The RS–Met was adjusted using a seasonal water deficit factor (fWD) based on daily rainfall, temperature and radiation data. We validated our adjusted RS–Met with eddy covariance flux measurements using a newly developed mobile lab system and the single active FLUXNET station operating in this region (Yatir pine forest station) at a total of seven forest and non-forest sites across a climatic transect in Israel (280–770 mm yr−1). RS–Met was also compared to the satellite-borne MODIS-based ET and GPP products (MOD16 and MOD17, respectively) at these sites.Results show that the inclusion of the fWD significantly improved the model, with R =  0.64–0.91 for the ET-adjusted model (compared to 0.05–0.80 for the unadjusted model) and R =  0.72–0.92 for the adjusted GPP model (compared to R =  0.56–0.90 of the non-adjusted model). The RS–Met (with the fWD) successfully tracked observed changes in ET and GPP between dry and wet seasons across the sites. ET and GPP estimates from the adjusted RS–Met also agreed well with eddy covariance estimates on an annual timescale at the FLUXNET station of Yatir (266 ± 61 vs. 257 ± 58 mm yr−1 and 765 ± 112 vs. 748 ± 124 gC m−2 yr−1 for ET and GPP, respectively). Comparison with MODIS products showed consistently lower estimates from the MODIS-based models, particularly at the forest sites. Using the adjusted RS–Met, we show that afforestation significantly increased the water use efficiency (the ratio of carbon uptake to ET) in this region, with the positive effect decreasing when moving from dry to more humid environments, strengthening the importance of drylands afforestation. This simple yet robust biophysical approach shows promise for reliable ecosystem-level estimations of ET and CO2 uptake in extreme high-energy water-limited environments

    The association of arable weeds with modern wild cereal habitats: implications for reconstructing the origins of plant cultivation in the Levant

    No full text
    Reconstructing the origins of plant cultivation in southwest Asia is crucial for understanding associated processes such as the emergence of sedentary communities and domesticated crops. Among the criteria archaeobotanists developed for identifying the earliest plant cultivation, the presence of potential arable weeds found in association with wild cereal and legume remains has been used as a basis for supporting models of prolonged wild plant cultivation before domesticated crops appear. However, the proposed weed floras mainly consist of genus-level identifications that do not differentiate between arable weeds and related species that characterise non-arable habitats. Here we test, for the first time, whether the potential arable weed taxa widely used to identify wild plant cultivation also occur in non-cultivated wild cereal populations. Based on modern survey data from the southern Levant we show that the proposed weed taxa characterise both grasslands and fields. Our findings, therefore, do not support the use of these taxa for reconstructing early cultivation. Instead, for future studies we suggest an approach based on the analysis of plant functional traits related to major agroecological variables such as fertility and disturbance, which has the potential to overcome some of the methodological problems

    A new functional ecological model reveals the nature of early plant management in southwest Asia

    No full text
    The protracted domestication model posits that wild cereals in southwest Asia were cultivated over millennia before the appearance of domesticated cereals in the archaeological record. These ‘pre-domestication cultivation’ activities are widely understood as entailing annual cycles of soil tillage and sowing and are expected to select for domestic traits such as non-shattering ears. However, the reconstruction of these practices is mostly based on indirect evidence and speculation, raising the question of whether pre-domestication cultivation created arable environments that would select for domestic traits. We developed a novel functional ecological model that distinguishes arable fields from wild cereal habitats in the Levant using plant functional traits related to mechanical soil disturbance. Our results show that exploitation practices at key pre-domestication cultivation sites maintained soil disturbance conditions similar to untilled wild cereal habitats. This implies that pre-domestication cultivation did not create arable environments through regular tillage but entailed low-input exploitation practices oriented on the ecological strategies of the competitive large-seeded grasses themselves

    Comparison of CO<sub>2</sub> and O<sub>2</sub> fluxes demonstrate retention of respired CO<sub>2</sub> in tree stems from a range of tree species

    No full text
    The ratio of CO2 efflux to O2 influx (ARQ, apparent respiratory quotient) in tree stems is expected to be 1.0 for carbohydrates, the main substrate supporting stem respiration. In previous studies of stem fluxes, ARQ values below 1.0 were observed and hypothesized to indicate retention of respired carbon within the stem. Here, we demonstrate that stem ARQ<1.0 values are common across 85 tropical, temperate, and Mediterranean forest trees from 9 different species. Mean ARQ values per species per site ranged from 0.39 to 0.78, with an overall mean of 0.59. Assuming that O2 uptake provides a measure of in situ stem respiration (due to the low solubility of O2), the overall mean indicates that on average 41% of CO2 respired in stems is not emitted from the local stem surface. The instantaneous ARQ did not vary with sap flow. ARQ values of incubated stem cores were similar to those measured in stem chambers on intact trees. We therefore conclude that dissolution of CO2 in the xylem sap and transport away from the site of respiration cannot explain the low ARQ values. We suggest to examine refixation of respired CO2 in biosynthesis reactions as possible mechanism for low ARQ values
    corecore