65 research outputs found

    The Vibration Behavior of Sub-Micrometer Gas Vesicles in Response to Acoustic Excitation Determined via Laser Doppler Vibrometry

    Get PDF
    The ability to monitor sub‐micrometer gas vesicles' (GVs) vibration behavior to nonlinear buckling and collapse using laser Doppler vibrometry is reported, providing a precise noncontact technique for monitoring the motion of sub‐micrometer objects. The fundamental and first harmonic resonance frequencies of the vesicles are found to be 1.024 and 1.710 GHz, respectively. An interparticle resonance is furthermore identified at ≈300 MHz, inversely dependent upon the agglomerated GV size of around 615 nm. Most importantly, the vesicles amplify and broaden input acoustic signals at far lower frequencies—for example, 7 MHz—associated with medical and industrial applications, and they are found to transition from a linear to nonlinear response at 150 kPa and to collapse at 350 kPa or greater

    The Vibration Behavior of Sub-Micrometer Gas Vesicles in Response to Acoustic Excitation Determined via Laser Doppler Vibrometry

    Get PDF
    The ability to monitor sub‐micrometer gas vesicles' (GVs) vibration behavior to nonlinear buckling and collapse using laser Doppler vibrometry is reported, providing a precise noncontact technique for monitoring the motion of sub‐micrometer objects. The fundamental and first harmonic resonance frequencies of the vesicles are found to be 1.024 and 1.710 GHz, respectively. An interparticle resonance is furthermore identified at ≈300 MHz, inversely dependent upon the agglomerated GV size of around 615 nm. Most importantly, the vesicles amplify and broaden input acoustic signals at far lower frequencies—for example, 7 MHz—associated with medical and industrial applications, and they are found to transition from a linear to nonlinear response at 150 kPa and to collapse at 350 kPa or greater

    Stenciled conducting bismuth nanowires

    Get PDF
    Stencil lithography is used here for the fabrication of bismuth nanowires using thermal evaporation. This technique provides good electrical contact resistance by having the nanowire structure and the contact pads deposited at the same time. It has also the advantage of modulating nanowires' height as a function of their width. As the evaporated material deposits on the stencil mask, the apertures shrink in size until they are fully clogged and no more material can pass through. Thus, the authors obtain variable-height (from 27 to 95 nm) nanowires in the same evaporation. Upon their morphological (scanning electron microscopy and atomic force microscopy) and electrical characterizations, the authors obtain their resistivity, which is independent of the nanowire size and is the lowest reported for physical vapor deposition of Bi nanowires (1.2×10−3 Omega cm), only an order of magnitude higher than that of bulk bismuth

    Analysis of the blurring in stencil lithography

    Get PDF
    A quantitative analysis of the blurring and its dependence on the stencil-substrate gap and the deposition parameters in stencil lithography, a high resolution shadow mask technique, is presented. The blurring is manifested in two ways: first, the structure directly deposited on the substrate is larger than the stencil aperture due to geometrical factors, and second, a halo of material is formed surrounding the deposited structure presumably due to surface diffusion. The blurring is studied as a function of the gap using dedicated stencils that allow a controlled variation of the gap. Our results show a linear relationship between the gap and the blurring of the directly deposited structure. In our configuration, with a material source of ~5 mm and a source-substrate distance of 1 m, we extract that ~10 micrometers of gap enlarge the directly deposited structures by ~50 nm. The measured halo varies from 0.2 to 3 micrometers in width depending on the gap, the stencil aperture size and other deposition parameters. We also show that the blurring can be reduced by decreasing the nominal deposition thickness, the deposition rate and the substrate temperature

    Reusability of nanostencils for the patterning of Aluminum nanostructures by selective wet etching

    Get PDF
    One of the major advantages of stencil lithography is the possibility to use stencils many times. However, when stencils contain nanoapertures, the clogging of the membranes limits the useful life time of the stencils. The clogging is due to the accumulation of material deposited inside the apertures of the stencil. Here, we report a study on the effect of the clogging on the life time of stencils after Al depositions through the stencils. Then we present a method to clean the stencils based on Al wet etching to eliminate the clogging. We show that this method allows the reusability of stencils for the repeatable depositions of Al nanostructures

    Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect

    Get PDF
    The optical transparency and high electron mobility of graphene make it an attractive material for photovoltaics. We present a field-effect solar cell using graphene to form a tunable junction barrier with an Earth-abundant and low cost zinc phosphide (Zn_3P_2) thin-film light absorber. Adding a semitransparent top electrostatic gate allows for tuning of the graphene Fermi level and hence the energy barrier at the graphene-Zn_3P_2 junction, going from an ohmic contact at negative gate voltages to a rectifying barrier at positive gate voltages. We perform current and capacitance measurements at different gate voltages in order to demonstrate the control of the energy barrier and depletion width in the zinc phosphide. Our photovoltaic measurements show that the efficiency conversion is increased 2-fold when we increase the gate voltage and the junction barrier to maximize the photovoltaic response. At an optimal gate voltage of +2 V, we obtain an open-circuit voltage of V_(oc) = 0.53 V and an efficiency of 1.9% under AM 1.5 1-sun solar illumination. This work demonstrates that the field effect can be used to modulate and optimize the response of photovoltaic devices incorporating grapheme

    Amplified Genes May Be Overexpressed, Unchanged, or Downregulated in Cervical Cancer Cell Lines

    Get PDF
    Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments
    • 

    corecore