19 research outputs found

    Stormorken syndrome caused by a p.R304W STIM1 mutation: The first Italian patient and a review of the literature

    Get PDF
    Stormorken syndrome is a rare autosomal dominant disease that is characterized by a complex phenotype that includes tubular aggregate myopathy (TAM), bleeding diathesis, hyposplenism, mild hypocalcemia and additional features, such as miosis and a mild intellectual disability (dyslexia). Stormorken syndrome is caused by autosomal dominant mutations in the STIM1 gene, which encodes an endoplasmic reticulum Ca2+ sensor. Here, we describe the clinical and molecular aspects of a 21-year-old Italian female with Stormorken syndrome. The STIM1 gene sequence identified a c.910C T transition in a STIM1 allele (p.R304W). The p.R304W mutation is a common mutation that is responsible for Stormorken syndrome and is hypothesized to cause a gain of function action associated with a rise in Ca2+ levels. A review of published STIM1 mutations (n = 50) and reported Stormorken patients (n = 11) indicated a genotype-phenotype correlation with mutations in a coiled coil cytoplasmic domain associated with complete Stormorken syndrome, and other pathological variants outside this region were more often linked to an incomplete phenotype. Our study describes the first Italian patient with Stormorken syndrome, contributes to the genotype/phenotype correlation and highlights the possibility of directly investigating the p.R304W mutation in the presence of a typical phenotype

    Immune Escape after Hematopoietic Stem Cell Transplantation (HSCT): From Mechanisms to Novel Therapies

    No full text
    Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Recent advances in understanding its molecular basis have opened the way to new therapeutic strategies, including targeted therapies. However, despite an improvement in prognosis it has been documented in recent years (especially in younger patients) that allogenic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment in AML and the first therapeutic option for high-risk patients. After allo-HSCT, relapse is still a major complication, and is observed in about 50% of patients. Current evidence suggests that relapse is not due to clonal evolution, but instead to the ability of the AML cell population to escape immune control by a variety of mechanisms including the altered expression of HLA-molecules, production of anti-inflammatory cytokines, relevant metabolic changes and expression of immune checkpoint (ICP) inhibitors capable of “switching-off” the immune response against leukemic cells. Here, we review the main mechanisms of immune escape and identify potential strategies to overcome these mechanisms

    Eradication of Measurable Residual Disease in AML: A Challenging Clinical Goal

    No full text
    In non-promyelocytic (non-M3) AML measurable residual disease (MRD) detected by multi-parameter flow cytometry and molecular technologies, which are guided by Consensus-based guidelines and discover very low leukemic cell numbers far below the 5% threshold of morphological assessment, has emerged as the most relevant predictor of clinical outcome. Currently, it is well-established that MRD positivity after standard induction and consolidation chemotherapy, as well as during the period preceding an allogeneic hematopoietic stem cell transplant (allo-HSCT), portends to a significantly inferior relapse-free survival (RFS) and overall survival (OS). In addition, it has become absolutely clear that conversion from an MRD-positive to an MRD-negative state provides a favorable clinical outcome similar to that associated with early MRD negativity. Thus, the complete eradication of MRD, i.e., the clearance of the few leukemic stem cells—which, due to their chemo-radiotherapy resistance, might eventually be responsible of disease recurrence—has become an un-met clinical need in AML. Nowadays, this goal might potentially be achieved thanks to the development of novel innovative treatment strategies, including those targeting driver mutations, apoptosis, methylation patterns and leukemic proteins. The aim of this review is to analyze these strategies and to suggest any potential combination able to induce MRD negativity in the pre- and post-HSCT period

    COVID-19 in Patients with Hematologic Diseases

    No full text
    The COVID-19 outbreak had a strong impact on people’s lives all over the world. Patients with hematologic diseases have been heavily affected by the pandemic, because their immune system may be compromised due to anti-cancer or immunosuppressive therapies and because diagnosis and treatment of their baseline conditions were delayed during lockdowns. Hematologic malignancies emerged very soon as risk factors for severe COVID-19 infection, increasing the mortality rate. SARS-CoV2 can also induce or exacerbate immune-mediated cytopenias, such as autoimmune hemolytic anemias, complement-mediated anemias, and immune thrombocytopenia. Active immunization with vaccines has been shown to be the best prophylaxis of severe COVID-19 in hematologic patients. However, the immune response to vaccines may be significantly impaired, especially in those receiving anti-CD20 monoclonal antibodies or immunosuppressive agents. Recently, antiviral drugs and monoclonal antibodies have become available for pre-exposure and post-exposure prevention of severe COVID-19. As adverse events after vaccines are extremely rare, the cost–benefit ratio is largely in favor of vaccination, even in patients who might be non-responders; in the hematological setting, all patients should be considered at high risk of developing complications due to SARS-CoV2 infection and should be offered all the therapies aimed to prevent them

    Philadelphia chromosome-negative myeloproliferative neoplasms in younger adults: A critical discussion of unmet medical needs, with a focus on pregnancy

    No full text
    Myeloproliferative neoplasms (MPN) are traditionally regarded as a disease of older adults, though a not negligible fraction of cases occurs at a younger age, including women of childbearing potential. MPN in younger patients, indeed, offer several challenges for the clinical hematologist, that goes from difficulties in reaching a timely and accurate diagnosis to a peculiar thrombotic risk, with a relatively high incidence of thromboses in unusual sites (as the splanchnic veins or the cerebral ones). Moreover, the issue of pregnancy is recently gaining more attention as maternal age is rising and molecular screening are widely implemented, leading to a better recognition of these cases, both before and during pregnancy. In the present work we aim at discussing four clinical topic that we identified as areas of uncertainty or true unmet medical needs in the management of younger patients with MPN, with a particular focus on the topic of pregnancy. For each of these topics, we critically reviewed the available evidence that support treatment decisions, though acknowledging that recommendations in this field are mostly based on expert opinion or derived from guidelines of other clinical conditions that share with MPN a high vascular risk, as antiphospholipid syndrome. Taking into consideration both the lack of evidence-based data and the clinical heterogeneity of MPN, we support an individualized strategy of counseling and management for both young patients and for expectant mother with MPN
    corecore