67 research outputs found

    Phase-Resolved Infrared H- and K-band Spectroscopy of EF Eridani

    Full text link
    We present new phase-resolved H and K-band spectroscopy of the ultra-short period magnetic cataclysmic variable EF Eri in its current, prolonged ``low'' state obtained using NIRI on Gemini-North, and NIRSPEC on Keck II. These new data show that the H-band spectrum of EF Eri appears to be dominated by cyclotron emission during the entire orbital cycle. The {\it K}-band spectrum of EF Eri is likewise dominated by cyclotron emission during most of an orbital period, but near binary phase 0.0, the secondary star spectrum may be visible. We conclude that strong, and highly variable cyclotron emission is responsible for the photometric variation previously reported for EF Eri. The nature of this cyclotron emission is complex: the H-band spectra show that the dominant cyclotron harmonic at phase 0.5 peaks at 1.65 μ\mum, but at phase 0.0, the harmonic peaks near 1.72 μ\mum. At phase 0.5, there is another cyclotron feature present that peaks in between the H and K bands (near 1.93 μ\mum), but at phase 0.0, no such feature is present. These data suggest that cyclotron emission from both poles is occurring.Comment: 23 pages of text, 8 figure

    The images of psychiatry scale: development, factor structure, and reliability.

    Get PDF
    BACKGROUND: This analysis is based on a survey questionnaire designed to describe medical educators' views of psychiatry and psychiatrists. Our goals in this paper were to assess the psychometric properties of the survey questions by (a) using exploratory factor analysis to identify the basic factor structure underlying 37 survey items; (b) testing the resulting factor structure using confirmatory factor analysis; and (c) assessing the internal reliability of each identified factor. To our knowledge, this is the first attempt to use these techniques to psychometrically assess a scale measuring the strength of stigma that medical educators attached to psychiatry. METHODS: Survey data were collected from a random sample of 1,059 teaching faculty in 23 academic teaching sites in 15 countries. We conducted exploratory and confirmatory factor analysis to identify the scale structure and Cronbach's alpha to assess internal consistency of the resulting scales. RESULTS: Results showed that a two-factor solution was the best fit for the data. Following exploratory factor analysis, we conducted confirmatory factor analysis on a split half of the sample. Results highlighted several items with low loadings. Excluding factors with low correlations and allowing for several correlated variances resulted in a good fitting model explaining 95% of the variance in the data. CONCLUSIONS: We identified two unidimensional scales. The Images Scale contained 11 items measuring stereotypic content concerning psychiatry and psychiatrists. The Efficacy of Psychiatry Scale contained 5 items addressing perceptions of the challenges and effectiveness of psychiatry as a discipline

    Parental Guidance Suggested: Engaging Parents as Partners in Research Studies of Genomic Screening for a Pediatric Population

    Get PDF
    Recent advances in genomic sequencing and genomic medicine are reshaping the landscape of clinical care. As a screening modality, genetic sequencing has the potential to dramatically expand the clinical utility of newborn screening (NBS), though significant barriers remain regarding ethical, legal, and social implications (ELSI) and technical and evidentiary challenges. Stakeholder-informed implementation research is poised to grapple with many of these barriers, and parents are crucial stakeholders in this process. We describe the formation and activities of a Community Research Board (CRB) composed of parents with diverse backgrounds assembled to participate in an ongoing research partnership with genomic and public health researchers at the University of North Carolina. The mission of the CRB is to provide insight into parental perspectives regarding the prospect of adding genomic sequencing to NBS and collaboratively develop strategies to ensure its equitable uptake. We describe how these contributions can improve the accessibility of research and recruitment methods and promote trust and inclusivity within diverse communities to maximize the societal benefit of population genomic screening in healthy children

    How paradata can illuminate technical, social and professional role changes between the Poverty in the UK (1967/1968) and Poverty and Social Exclusion in the UK (2012) surveys

    Get PDF
    © 2016, The Author(s). This article brings together analyses of the micro paradata ‘by-products’ from the 1967/1968 Poverty in the United Kingdom (PinUK) and 2012 Poverty and Social Exclusion in the UK (PSE) surveys to explore changes in the conditions of production over this 45year period. We highlight technical, social and professional role continuities and changes, shaped by the institutionalisation of survey researchers, the professionalization of the field interviewer, and economisation. While there are similarities between the surveys in that field interviewers were and are at the bottom of the research hierarchy, we demonstrate an increasing segregation between the core research team and field interviewers. In PinUK the field interviewers are visible in the paper survey booklets; through their handwritten notes on codes and in written marginalia they can ‘talk’ to the central research team. In PSE they are absent from the computer mediated data, and from communication with the central team. We argue that, while there have been other benefits to field interviewers, their relational labour has become less visible in a shift from the exercise of observational judgement to an emphasis on standardisation. Yet, analyses of what field interviewers actually do show that they still need to deploy the same interpersonal skills and resourcefulness to secure and maintain interviews as they did 45years previously

    Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

    Get PDF
    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd

    CropPol: a dynamic, open and global database on crop pollination

    Get PDF
    Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore