35 research outputs found

    An investigation of the mitochondrial sirtuin enzyme SIRT3 and its influence on the response of skeletal muscle and liver to lipid oversupply

    Full text link
    SIRT3, a member of the sirtuin family of NAD+-dependent deacetylases, has been shown to directly regulate a range of mitochondrial proteins, suggesting a key role for this enzyme in energy metabolism. Some studies in SIRT3 knockout mice and high fat diet (HFD) fed mice support a link between low SIRT3 protein and detrimental metabolic outcomes. The aim of this thesis was to investigate the effects of acute tissue-specific overexpression of SIRT3 in liver and skeletal muscle under conditions of lipid excess, to see if increasing levels of this deacetylase enzyme could have beneficial metabolic effects. Eleven-fold overexpression of SIRT3 in hind-limb muscles in rats was achieved via intramuscular injection of SIRT3 adenoassociated virus (AAV). Rats were then fed a chow or HFD for 4 weeks after which they were assessed for either mitochondrial substrate oxidation using a Clark electrode, or insulin sensitivity via a hyperinsulinemic-euglycemic clamp. SIRT3 overexpression in muscle had no impact on body composition or serum profiles, however in isolated mitochondria SIRT3 overexpression caused an increase in oxygen consumption. Although HFD-feeding for 4 weeks induced significant impairments in skeletal muscle metabolism, including increased intramuscular triglyceride and a ~30% reduction in glucose uptake into muscle during the clamp, there was no significant effect of SIRT3 overexpression on these parameters. Approximately 2-fold SIRT3 overexpression in mouse liver was induced using the hydrodynamic tail vein injection (HTVI) technique. Isolated primary hepatocytes from SIRT3 overexpressing mice were found to have increased oxygen consumption and reduced triglyceride accumulation following fatty acid incubation compared to control hepatocytes. However, in vivo assessment of SIRT3 overexpression in liver tissue showed that even though there were changes induced in the amount of acetylation detected by mass spectrometry over the timeframe studied, SIRT3 overexpression had no effect on glucose tolerance, body composition or liver triglyceride accumulation in response to HFD. These results suggest that despite beneficial effects ex vivo, overexpression of SIRT3 in both skeletal muscle and liver in the whole body setting is not protective against the detrimental metabolic outcomes associated with feeding a HFD to rodents

    ARDD 2020: from aging mechanisms to interventions

    Get PDF
    Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA

    Assessment of new public management in health care: the French case

    Get PDF

    Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle

    Get PDF
    Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs

    Disparate metabolic response to fructose feeding between different mouse strains

    Get PDF
    Diets enriched in fructose (FR) increase lipogenesis in the liver, leading to hepatic lipid accumulation and the development of insulin resistance. Previously, we have shown that in contrast to other mouse strains, BALB/c mice are resistant to high fat diet-induced metabolic deterioration, potentially due to a lack of ectopic lipid accumulation in the liver. In this study we have compared the metabolic response of BALB/c and C57BL/6 (BL6) mice to a fructose-enriched diet. Both strains of mice increased adiposity in response to FR-feeding, while only BL6 mice displayed elevated hepatic triglyceride (TAG) accumulation and glucose intolerance. The lack of hepatic TAG accumulation in BALB/c mice appeared to be linked to an altered balance between lipogenic and lipolytic pathways, while the protection from fructose-induced glucose intolerance in this strain was likely related to low levels of ER stress, a slight elevation in insulin levels and an altered profile of diacylglycerol species in the liver. Collectively these findings highlight the multifactorial nature of metabolic defects that develop in response to changes in the intake of specific nutrients and the divergent response of different mouse strains to dietary challenges

    Snail-Overexpression Induces Epithelial-mesenchymal Transition and Metabolic Reprogramming in Human Pancreatic Ductal Adenocarcinoma and Non-tumorigenic Ductal Cells

    No full text
    The zinc finger transcription factor Snail is a known effector of epithelial-to-mesenchymal transition (EMT), a process that underlies the enhanced invasiveness and chemoresistance of common to cancerous cells. Induction of Snail-driven EMT has also been shown to drive a range of pro-survival metabolic adaptations in different cancers. In the present study, we sought to determine the specific role that Snail has in driving EMT and adaptive metabolic programming in pancreatic ductal adenocarcinoma (PDAC) by overexpressing Snail in a PDAC cell line, Panc1, and in immortalized, non-tumorigenic human pancreatic ductal epithelial (HPDE) cells. Snail overexpression was able to induce EMT in both pancreatic cell lines through suppression of epithelial markers and upregulation of mesenchymal markers alongside changes in cell morphology and enhanced migratory capacity. Snail-overexpressed pancreatic cells additionally displayed increased glucose uptake and lactate production with concomitant reduction in oxidative metabolism measurements. Snail overexpression reduced maximal respiration in both Panc1 and HPDE cells, with further reductions seen in ATP production, spare respiratory capacity and non-mitochondrial respiration in Snail overexpressing Panc1 cells. Accordingly, lower expression of mitochondrial electron transport chain proteins was observed with Snail overexpression, particularly within Panc1 cells. Modelling of 13C metabolite flux within both cell lines revealed decreased carbon flux from glucose in the TCA cycle in snai1-overexpressing Panc1 cells only. This work further highlights the role that Snail plays in EMT and demonstrates its specific effects on metabolic reprogramming of glucose metabolism in PDAC

    Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer

    Get PDF
    Human exonuclease 1 (EXO1), a 5′→3′ exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer

    Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species

    No full text
    In a recent study, we showed that in response to high fat feeding C57BL/6, 129X1, DBA/2 and FVB/N mice all developed glucose intolerance, while BALB/c mice displayed minimal deterioration in glucose tolerance and insulin action. Lipidomic analysis of livers across these five strains has revealedmarked strain-specific differences in ceramide (Cer) and sphingomyelin (SM)specieswith high-fat feeding;with increases in C16-C22 (long-chain) and reductions in C N 22 (very long-chain) Cer and SM species observed in the four strains that developed HFDinduced glucose intolerance. Intriguingly, the opposite pattern was observed in sphingolipid species in BALB/c mice. These strain-specific changes in sphingolipid acylation closely correlated with ceramide synthase 2 (CerS2) protein content and activity, with reduced CerS2 levels/activity observed in glucose intolerant strains and increased content in BALB/c mice. Overexpression of CerS2 in primary mouse hepatocytes induced a specific elevation in very long-chain Cer, but despite the overall increase in ceramide abundance, there was a substantial improvement in insulin signal transduction, as well as decreased ER stress and gluconeogenic markers. Overall our findings suggest that very long-chain sphingolipid species exhibit a protective role against the development of glucose intolerance and hepatic insulin resistance
    corecore