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Abstract: Human exonuclease 1 (EXO1), a 5′→3′ exonuclease, contributes to the regulation of the
cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways.
These processes are required for the resolution of stalled or blocked DNA replication that can lead to
replication stress and potential collapse of the replication fork. Failure to restart the DNA replication
process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In
this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell
cycle checkpoints, and the link between EXO1 and cancer.

Keywords: DNA repair; double strand break repair; exonuclease 1; EXO1; mismatch repair; MMR;
NER; nucleotide excision repair; strand displacements; TLS; translesion DNA synthesis

1. Introduction

Human exonuclease 1 (EXO1) contributes to checkpoint progression and to several DNA repair
pathways involved in reducing DNA replication stress, for example, in mismatch repair (MMR),
translesion DNA synthesis (TLS), nucleotide excision repair (NER), double-strand break repair (DSBR),
and checkpoint activation to restart stalled DNA forks [1–6]. The multifarious and crucial roles of
EXO1 in these DNA repair pathways are summarized in Figure 1.

EXO1 is a member of the Rad2/XPG family of nucleases [7], and contains an active domain,
located at the N-terminal region of the protein (Figure 2). The EXO1 transcript has 5′→3′ exonuclease
activity, as well as 5′ structure specific DNA endonuclease activity and 5′→3′ RNase H activity [7,8].
EXO1 has a high affinity for processing double stranded DNA (dsDNA), DNA nicks, gaps, and DNA
fork structures, and is involved in resolving double Holliday junctions [9–12]. During DNA replication
in the S-phase of the cell cycle, a polymerase can incorporate a mismatched DNA base or encounter
secondary DNA structures, which can stall the replication fork and lead to replication stress. The
collapse of a replication fork can have severe consequences, and failure to restart a stalled fork may
lead to double-strand breaks, chromosomal rearrangement, cell-cycle arrest, cell death, or malignant
transformation [13,14].

The contribution of EXO1 in the safeguarding stability of the genome during DNA replicative
and post-replicative processes is well-established. EXO1 activity contributes to several DNA repair
processes; however, it is not clear if the absence or malfunction of EXO1 can contribute to cancer
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development. We will herein examine the putative wider roles of EXO1 as a guardian of our genome
and investigate its possible role in cancer progression and initiation.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW  2 of 15 

 
Figure 1. Human EXO1 participates in both replicative and post-replicative processes. In the 
replicative process, EXO1 contributes to DNA replication by assisting in the removal of mismatches, 
bypassing the lesion using translesion synthesis, or by assisting with nucleotide excision repair by 
activating the NER repair pathway. EXO1 also has a role in DNA resection during the process of 
homologous recombination. 

 
Figure 2. Interaction domains in EXO1. Schematic overview of the relevant interaction domains in the 
human EXO1 protein, denoting interaction domains with mismatch repair proteins MSH3, MLH1, 
MSH2, and other significant interaction regions, including with PARP1, PCNA, and the nuclear 
localization signal (NLS). 

2. DNA Replication 

Enzymes able to metabolize DNA are required for modulating DNA replication. EXO1 is 
intricately involved in this process both as an enzyme involved in replication and in DNA repair 
pathways such as homologous recombination, but it is also an essential enzyme in the replication 
process, such as DNA strand displacement. Strand displacement describes the removal of single 
stranded RNA or DNA from an RNA:DNA or DNA:DNA duplex, a process required for multiple 
essential cellular processes, such as DNA replication and DNA repair. Accordingly, flap structure-
specific endonuclease 1 (FEN1), EXO1, and polymerase δ are the main factors in primer removal and 
Okazaki fragment maturation at the lagging strand in the process of strand displacement during 
replication [8,15–19]. In yeast, EXO1 can substitute for RAD27 (FEN1 is the human homolog) in RNA 
primer removal [11]. Indeed, in vitro assays suggest that 5’ flaps (< 5 nt) generated by polymerase δ 
during replication are efficiently removed by FEN1 or EXO1 [9,11,15,16]. The 3’-exonuclease activity 
of polymerase δ avoids excessive strand displacement [19]. Deletion of POL32 (third subunit of 
polymerase δ) can suppress the lethality of growth defects of RAD27 and polymerase δ D520V 

Figure 1. Human EXO1 participates in both replicative and post-replicative processes. In the
replicative process, EXO1 contributes to DNA replication by assisting in the removal of mismatches,
bypassing the lesion using translesion synthesis, or by assisting with nucleotide excision repair by
activating the NER repair pathway. EXO1 also has a role in DNA resection during the process of
homologous recombination.
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Figure 2. Interaction domains in EXO1. Schematic overview of the relevant interaction domains
in the human EXO1 protein, denoting interaction domains with mismatch repair proteins MSH3,
MLH1, MSH2, and other significant interaction regions, including with PARP1, PCNA, and the nuclear
localization signal (NLS).

2. DNA Replication

Enzymes able to metabolize DNA are required for modulating DNA replication. EXO1
is intricately involved in this process both as an enzyme involved in replication and in DNA
repair pathways such as homologous recombination, but it is also an essential enzyme in the
replication process, such as DNA strand displacement. Strand displacement describes the removal
of single stranded RNA or DNA from an RNA:DNA or DNA:DNA duplex, a process required for
multiple essential cellular processes, such as DNA replication and DNA repair. Accordingly, flap
structure-specific endonuclease 1 (FEN1), EXO1, and polymerase δ are the main factors in primer
removal and Okazaki fragment maturation at the lagging strand in the process of strand displacement
during replication [8,15–19]. In yeast, EXO1 can substitute for RAD27 (FEN1 is the human homolog) in
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RNA primer removal [11]. Indeed, in vitro assays suggest that 5’ flaps (<5 nt) generated by polymerase
δ during replication are efficiently removed by FEN1 or EXO1 [9,11,15,16]. The 3’-exonuclease activity
of polymerase δ avoids excessive strand displacement [19]. Deletion of POL32 (third subunit of
polymerase δ) can suppress the lethality of growth defects of RAD27 and polymerase δ D520V mutants
in yeast (defective for RAD27 and the 3’→5’ exonuclease of polymerase δ) [20]. In support of this
observation, synthetic lethality is seen in yeast exo1∆, rad27∆ double knockout cells [17–19,21]. This
suggests significant overlap in the functionality of these enzymes. Accordingly, both human FEN1
and EXO1 have weak flap activity at long 5’ flap overhangs (5–20 nucleotides), but efficiently remove
mono- or dinucleotide overhangs [8,11,15]. Further, both EXO1 and FEN1 have been demonstrated to
have RNA and DNA displacement activity in vitro [8,11,15,21]. In addition, in biochemical assays, it
was demonstrated that the human RecQL helicases, RECQ1 and WRN, physically and functionally
interact with human EXO1 and increase its exo- and endonucleolytic incision activities catalyzed
by EXO1 [22,23]. Both RecQL helicases efficiently unwind the 5’ flap DNA substrate [22,23], which
is a critical intermediate that arises during the DNA strand displacement process. Therefore, the
combined helicase and physical interaction of EXO1 with RECQL1 or WRN may play an important
role in the enhancement of DNA strand displacement, such as that occurring during lagging strand
DNA synthesis at the replication fork, or during the DNA repair (for example, long patch base excision
repair) that also potentially leads to strand displacement. These findings highlight the role of EXO1 in
DNA replication and underscore the need for a multitude of enzymatic processes required for human
DNA synthesis. Longer DNA flaps with more than 25 nucleotides are processed in the presence of RPA,
FEN1, and helicase partner with either the ATP-dependent helicase Petite Integration Frequency 1
(PIF1) or DNA replication helicase/nuclease 2 (DNA2) in vitro [24–28]. However, it was recently
demonstrated that DNA2 and RPA can process long flaps independent of RAD27 in yeast [29,30].
In vitro data suggest that POL32 has no effect on the generation of short flaps. Notably, longer flaps
only accumulate in the presence of POL32, indicating that polymerase δ and FEN1 team up in short
flap removal. The role of EXO1 in the removal of long DNA flaps of more than 25 nucleotides has
not yet been extensively studied [9,11]. It is possible that EXO1 could potentially act as a back-up to
FEN1 during circumstances of cellular stress. However, it has to be taken into account that the actual
contribution of EXO1 in humans remains understudied and there is much scope for further work in
this area.

3. Mismatch Repair

High-fidelity DNA replication is required to maintain an unaltered genetic code during cell
division. The MMR pathway is a post-replicative DNA repair system, which mainly corrects DNA
polymerase slippage and damaged bases, such as chemically-induced base adducts; base mismatches;
and base insertions, deletions, and loops. The MMR pathway consists of several steps, which are
detailed below. The initial recognition step of eukaryotic MMR utilizes the MutSα complex made up of
mutS homolog 2 (MSH2) and mutS homolog 6 (MSH6) or MutSβ complex (MSH2 and mutS homolog 3
(MSH3)). The MutSα mainly recognizes single base mismatches, while the MutSβ complex detects
larger lesions, insertion/deletions, or loops [31–33]. The MutSα or β complex operates by binding to
the DNA mismatched base or DNA distortion. Following the initial DNA distortion recognition, the
MutLα complex (heterodimer of MLH1/Postmeiotic Segregation Increased 2 (PMS2)), proliferating
cell nuclear antigen (PCNA), and replication factor C (RFC) are recruited. MutSα or Mutsβ forms a
tetrameric complex with MutLα at the site of the replication error. In the presence of PCNA and RFC,
the MutLα nicks the DNA at 3’ or 5’ to the lesion by use of the intrinsic endonuclease activity in PMS2.
EXO1’s contribution to the MMR was identified in fission yeast (Schizosaccharomyces pombe) after it
was co-purified with mismatch repair factor MSH2 [2]. EXO1 is the only known nuclease active in
the MMR pathway by interacting with the mismatch repair factors mutL homolog 1 (MLH1), MSH2,
MSH3, and PCNA (Table 1) [34–42]. EXO1 is recruited to excise the newly synthesized DNA containing
the replication error in a MutSα or β, and in a MutLα-dependent manner. Additional factors, such as
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replication protein A (RPA), guide the resection of the single stranded DNA (ssDNA) intermediates
during the DNA repair process to avoid the formation of secondary DNA structures or excessive
DNA degradation [43]. The repair reaction is completed by the joint activities of the PCNA and DNA
polymerase δ/ε resynthesizing the DNA, and DNA ligase I sealing the nick [44]. Malfunction of MMR
is associated with increased microsatellite instability (MSI), a hallmark of certain types of colon cancer,
such as hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch Syndrome (Online
Mendelian Inheritance in Man (OMIM) #120435) [45–47].

More recently, it was shown that MMR occurs in the absence of EXO1 [48,49], suggesting that a
proportion of MMR is EXO1-independent and relies on either strand displacement or involvement
of other helicases or nucleases. Indeed, several members of the RecQL family of helicases have been
proposed to be involved in MMR. The WRN helicase/exonuclease interacts with MutL1α, MutSα,
MutSβ, and RPA. However, only MutSα, MutSβ, and RPA stimulate the DNA helicase activity of
WRN on naked DNA [50–52]. Interestingly, it is reported that in some cases, cells from patients with
Werner Syndrome (OMIM#277700) show a malfunction in the MMR [32,53–55]. Nonsense mutations
in the BLM gene lead to Bloom Syndrome disease (OMIM#210900). Some Bloom Syndrome cases
show immunodeficiency and increased MSI [56]. Furthermore, the RECQL helicases, RECQL1 and
BLM, physically interact with MutLα, MutSα, and RPA [23,57–60]. Only MutSα and RPA enhance the
helicase activity of RECQ1 and BLM [23,58–61]. However, the above is in contrast to in vitro assays
with human cell extracts of BLM−/− and WRN−/− that show no defective MMR [62,63]. Altogether,
this suggests that the RECQL helicase has some stimulatory role in the MMR pathway, but does not
have a significant contribution in the absence of EXO1. Nonetheless, deficiency in the MMR pathway
in human cell lines in the absence of helicases WRN or BLM in combination with the depletion of
EXO1 has not been reported. In addition, some nucleases have been suggested to back up MMR in the
absence of EXO1, including the MRE11 homolog A (MRE11) and FAN1 (FANCD2/FANCI-Associated
Nuclease 1) [64]. The contribution of MRE11 to the MMR pathway and to MSI has recently been
reviewed [32]. A recent study showed that overexpression of the human polymerase δ D316A;E318A
mutant resulted in mild MMR deficiency [65]. In vitro experiments with cell extracts show that the
overexpression or addition of human EXO1 protein compliments the mild mutator phenotype of
polymerase δ D316A;E318A, indicating that EXO1 can provide backup to polymerase δ in its MMR
activity [65]. It has been suggested that the polymersase δ strand displacement activity may indeed
depend on the endo-nuclease activity of MutLα in the absence of EXO1 [66]; however, the mechanism
is so far unknown. While the role of EXO1 in MMR is well-established, EXO1-independent MMR in
eukaryotic cells is still not understood.

4. Translesion DNA Synthesis

Translesion DNA synthesis (TLS) describes the process by which a DNA polymerase can
synthesize a DNA strand across a lesion on the template strand. This process is critical to maintaining
functional DNA replication in the face of genotoxic stress and may act as a pathway to cope with ultra
violet (UV) induced DNA damage [3]. Indeed, in human cell lines, it was demonstrated that EXO1
recruits the TLS DNA polymerases κ and ι to sites of UV damage [3]. Interestingly, an inactivating
mutation in the aspartate at position 173 to alanine in EXO1 (EXO1-D173A) results in an inability to
recruit the TLS polymerase κ/ι to the damage site, suggesting an active role of EXO1 in TLS [3]. Notably,
in yeast, the EXO1 mutant strain (FF447AA) shows defective MMR due to the loss of interaction with
MLH1, but is still active in TLS [67]. However, it remains unclear if such an EXO1 variant can assist in
UV-induced TLS in mammals. In addition, the yeast 9-1-1 complex (three distinct subunits complex of
Ddc1, Mec3, and Rad17 in yeast and RAD9, HUS1, and RAD1 in humans) and EXO1 also contribute to
an error-free TLS pathway in a PCNA monoubiquitinylation manner that makes use of undamaged
sister chromatids as templates for repair [68]. Overall, EXO1 appears to have an emerging role in TLS,
requiring further investigation.
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5. Nucleotide Excision Repair

UV radiation from sunlight mainly damages DNA by causing cyclobutane pyrimidine dimers,
and 6–4 photoproducts, lesions typically repaired by the nucleotide excision repair pathway (NER)
independent of replication [69]. However, during the S-phase of the cell cycle, UV radiation-induced
base lesions block DNA replication. EXO1 belongs to the same family of nucleases as xeroderma
pigmentosum complementation group G (XPG), a protein involved in NER. Accordingly, cells damaged
by UV exposure and inhibited in translesion synthesis show an accumulation of EXO1 at the DNA
damage sites [3]. Indeed, an additive UV-sensitivity effect is observed in yeast when both rad2 (XPG
homolog in human) and exo1 are knocked out [69]. In addition, yeast EXO1 competes with the
translesion synthesis pathways, and converts the NER intermediates to long ssDNA gaps, leading to
checkpoint activation [4]. In human cell lines, EXO1 enlarges ssDNA gaps to stretch over 30 nucleotides
long to activate the ATR checkpoint [70]. The contribution of EXO1 to NER is likely limited to
enlarging the DNA gaps that occur as part of NER leading to checkpoint activation; although this is
not well-understood.

6. Homologous Recombination and DNA End Resection

Homologous recombination (HR) is an essential process involved in the repair of double
strand DNA breaks, mainly in the S and G2-phases of the cell cycle. A possible piece of evidence
suggesting the involvement of EXO1 in double strand DNA repair is the observation that Exo1null/null

mice show an increase in chromosomal breaks and base substitution, and predominately develop
lymphomas [71]. In addition, human cell lines depleted in EXO1 exert chromosomal instability and
demonstrate a hypersensitivity to ionizing radiation (IR), a hallmark of cells defective in homologous
recombination [5]. This provides support that EXO1 is required for the HR repair of DSBs in human
cells. In contrast, yeast exo1-/- has no significant defect in recombinational repair, with only minor
defects in DNA end processing [16,18,19,72]. Data also suggests that EXO1 is involved in DNA damage
signaling upon replication fork stalling [73]. The 5′→3′ DNA resection of DSB ends to produce a 3’
single stranded DNA overhang is a critical step in the repair of DSBs by HR [74]. In mouse embryonic
fibroblasts (MEF), Exo1null/null cells showed a defect in the DNA damage response [71]. Treatment of
Exo1null/null cells with the topoisomerase inhibitor camptothecin, which creates single strand breaks
(SSB) that ultimately lead to DSB during the S-phase, results in a reduction in phosphorylated
RPA (pRPA) foci at the DSBs [71]. Recruitment of pRPA is regulated by DNA damage response
protein-kinases, such as ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and
Rad3 related (ATR) [71]. PARP1, a factor involved in DSB repair, physically interacts with EXO1
at the PAR interaction motif (PIN) at the N-terminus of EXO1 [75,76] and stimulates EXO1 in its 5’
excision activity in an in vitro MMR assay [77]. Poly (ADP-Ribose) Polymerase 1 (PARP1) promotes
PAR-mediated polyADP-ribosylation (PARylation) recruitment to the DNA damage site, followed
by additional DNA repair factors [75,76]. The EXO1-R93G variant, mutated in its PIN domain, is
poorly recruited to damaged DNA [76]. This suggests that PARP1 is potentially essential in the early
recruitment of EXO1. The interplay between the MRE11-RAD50-NBS1 (MNR)-complex and EXO1 is
well-documented [78–81] and deletion in Mre11, Rad50, or Nbs1 genes has been shown to be lethal
in mice [82]. Mice that carry a hypomorphic allele of Nbs1 (Nbs1∆B/∆B) are viable, but show severe
developmental impairment, embryonic death, and chromosomal instability when Exo1 is lost [82].
The Nbs1∆B/∆B MEFs depleted in EXO1 strongly influenced DNA replication, DNA repair, checkpoint
signaling, and the DNA damage response [82].

The single-stranded DNA binding protein RPA has a central role in DNA replication, DNA repair,
recombination, and DNA resection [83]. DNA resection after double strand DNA breaks is proposed
to occur via two different routes. In the RPA-BLM-DNA2-MRN mediated route, RPA stimulates DNA
unwinding by the DNA helicase BLM in a 5’→3’ direction, leading to the formation of single stranded
DNA that can be resected by the nuclease DNA2 [79]. The other resection route is mediated by EXO1
and is stimulated by BLM, MRN, and RPA [79]. Indeed, yeast depleted in RPA and loss of Mre11
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eliminates both SGS1-DNA2 mediated and EXO1-dependent resection pathways [43], suggesting
that RPA and MRN are essential for resection. DNA-resection by EXO1 is probably inhibited by the
DNA binders RPA, Ku70/80, and/or C-terminal-binding protein interacting protein (CtIP) (the yeast
homolog is SAE2) [43,81,84–86]. Accordingly, in nonhomologous end joining, the Ku70/80 heterodimer
protects the DNA in a complex with DNA-PKcs for DNA end resection [86–88]. Therefore, EXO1
has a limited role in this pathway. In contrast, EXO1 likely collaborates in an alternative end joining
pathway with the WRN in trimming the DNA ends [89–91]. EXO1 interacts with WRN and enhances
the exonuclease activity of EXO1 by the C-terminal region of WRN. Biochemical assays suggest that
WRN and EXO1 function in replication stress, where WRN enhances EXO1 in processing stalled forks
or regressed replication forks [92]. More recently, it was shown that the WRN exonuclease activity
prevents unscheduled degradation by MRE11 and EXO1 during replication re-start [93]. Human cells
depleted in WRN show an enhanced degradation of the nascent DNA strand by MRE11 and EXO1
after camptothecin treatment [93]. In summary, EXO1 is required for homologous recombination,
while it is less essential for nonhomologous end joining.

7. Cell Cycle Regulation

Several lines of evidence suggest that EXO1 may be a central regulator of the cell cycle.
For example, in S-phase, EXO1 co-localizes with MMR protein MSH2 and cell cycle regulator
PCNA [39]. In humans, EXO1 interacts physically with PCNA via the PCNA-interacting protein
(PIP box) motif located in the C-terminal region of EXO1 [40,41,94]. Indeed, PCNA stimulates the
exonuclease activity of EXO1 on dsDNA substrates [95].

Further evidence for a regulatory function of EXO1 in the cell cycle comes from yeast, where the
absence of cell cycle regulator 14-3-3 leads to checkpoint defects [96]. In humans, EXO1 physically
interacts with six of the seven 14-3-3 isoforms and is stimulated by isoform 14-3-3η and 14-3-3σ in its
exonuclease activity in vitro [96]. The EXO1-dependent resection pathway is restrained by 14-3-3σ,
thereby counteracting EXO1 stimulation by PCNA [97,98]. In addition to the 14-3-3 complex, the 9-1-1
complex functions on the crossroads between checkpoint activation and DNA repair, and stimulates
DNA resection of yeast EXO1 [99,100]. In total, EXO1 physically and functionally interacts with
multiple central proteins involved in cell-cycle regulation and is therefore likely to be important in
these processes.

Table 1. EXO1 interactor proteins in humans and yeast. Significant interaction partners of EXO1 in
humans and yeast during different cellular processes.

Repair Process EXO1 Interaction
Proteins in Human Reference EXO1 Interaction

Proteins in Yeast Reference

Mismatch repair

MSH2
MSH3
MLH1
PCNA

[36,38]
[32,33]
[38,41]

[40]

MSH2
MSH3
MLH1

[2,34]
[72]
[72]

Homologous recombination
/DNA replication/DNA end resection

PARP1
BLM
WRN

RECQ1
CTIP

[75,76]
[57,79]

[22]
[23]
[85]

SGS1
SAE2

[74]
[74]

Cell cycle regulation
PCNA
14-3-3η
14-3-3σ

[40,41,95]
[97,98]
[97,98]

9-1-1
14-3-3

[99,100]
[96]

8. Link to Cancer

EXO1 has been associated with different types of cancers, including Lynch Syndrome, breast,
ovarian, lung, pancreatic, and gastric tract cancer (see Table 2) [101–117]. Lynch Syndrome is commonly
caused by mutations in the MLH1 and MSH2 genes in humans that give rise to almost two-thirds of all
Lynch Syndrome cases [45,118]. A hallmark of MMR deficiency in MSH2–/– and MLH1–/– cells is the
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presence of MSI, leading to increased chromosomal instability, which is believed to be the underlying
molecular driver of tumor formation in Lynch syndrome [21,45,118]. Several studies have been
conducted on single-nucleotide polymorphisms (SNP) in EXO1 related to MSI in tumors in humans;
however, it remains inconclusive if EXO1 defects contribute to MSI. However, in genomic-wide
association studies (GWAS), specific mutations in EXO1 have been identified as risk alleles for the
development of multiple types of cancer [112,116]. Notably, at least some of these mutations can
lead to the loss of protein function. For example, the A153V and N279S mutations are located in the
active nuclease domain (as highlighted in both Table 2, and shown graphically in Figure 2) and are
likely related to the malfunction of the nuclease activity of EXO1. Other mutations in EXO1, including
T439M, E670G, and P757L, are located in the MLH1 and MSH2 binding domains (Figure 2). One of
the most studied mutations is the E109K, which was suggested to be dysfunctional in the nuclease
domain [71,101]. However, biochemistry studies revealed that EXO1 E109K is functional in its nuclease
activity [119,120]. The mutation is located in the EXO1 PAR-binding motif, and therefore potentially
not recruited to sites of DNA damage [76]. The clinical data is supported by mouse models, where
the loss of Exo1 leads to an increased incidence of lymphomas, but interestingly not to increased
MSI [71]. Pathogenic mutations in both introns, exons and the untranslated regions of EXO1 have
been described [112]. Nevertheless, the overexpression of EXO1 has also been reported in several
other cancers, which in part is related to increased DNA repair activity [121–124]. However, EXO1
is in general expressed at low levels, independent of the cell-cycle progression or proliferative status
of the cell, and increased levels of EXO1 are harmful and lead to genomic instability [6]. Several
other nucleases including FEN1 and MRE11 have also been demonstrated to have elevated levels of
expression in tumors [125–127]. Clearly, the connection between EXO1 and cancer has been established
and could represent a druggable target in cancers where the EXO1 protein is overexpressed.
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Table 2. Mutations in EXO1 in relation to different cancers. Represents the most commonly reported
point mutations in EXO1 in relation to different cancer types. Abbreviations: CRC- colorectal cancer,
IC- cancer of the small intestine, BC- breast cancer, PC- pancreatic cancer, GC- gastric cancer, LC- lung
cancer, HCC- hepatocellular carcinoma, OC- oral cancer, and CC- cervical cancer.

Mutations in
EXO1 Region

Corresponding
DNA Sequence

Mutation
Reported SNP

Coding and
Non-Coding

Region

Type of
Cancer/Remark Reference

p.E109K c.326A>G rs756251971 exon CRC [101]

p.A153V c.458C>G rs143955774 exon

CRC, IC
Combined with
polε c.1373A>T,

p.Y458F

[102]

p.N279S c.836A>G rs4149909 exon BC, PC [103,104]

p.T439M c.1317G>A rs4149963 exon CRC [105]

p.E589K c.1765G>A rs1047840 exon
GC, LC, HCC,

Melanoma,
Glioblastoma

[106–113]

p.E670G c.2009A>G rs1776148 exon
GC, BC, OC,

LC, Melanoma,
Glioblastoma

[106–109,111–113]

p.R723G/p.R723S c.2167C>A/c.2167C>T rs1635498 exon GC, BC, OC,
LC [107–109,111,112]

p.P757L c.2270C>T rs9350 exon
CRC, PC, GC,
OC, LC, BC,
Melanoma

[105,107–109,111–114]

Non coding region

c.2212-1G>C rs4150000 Intron, splicing
variant PC [115]

rs72755295 Intron, splicing
variant [116]

rs1776177 UTR region GC, BC, OC,
LC [107–109,111]

rs1635517 UTR region GC, BC, OC,
LC [107–109,111]

rs3754093 UTR region GC, BC, OC,
LC [107–109,111]

rs851797 UTR region GC, BC, OC,
LC [107–109,111,112,117]

c.C-908G rs10802996 UTR region CC, GC, BC,
OC, LC [107–109,111,112]

9. Conclusions and Perspectives

Evidently, EXO1 is a central player in DNA metabolic processes. As elucidated herein, EXO1
contributes to several DNA repair pathways, which safeguard DNA replication, including MMR, TLS,
HR, and cell cycle regulation (Figure 2). Replication fork collapse and checkpoint failure during DNA
replication can lead to chromosomal instability or abnormal DNA repair, leading to translocation,
transformation, and cell death, all processes where EXO1 has been implicated.

Nonetheless, several questions remain to be answered. For example, given the putative central
role of EXO1, it remains a mystery why the knockout of EXO1 in mice, as well as loss of function, leads
to a relatively mild phenotype. Further, the mechanism of EXO1-independent MMR is still unclear,
particularly regarding at what point this specific pathway is active. Given the biochemical activity
of EXO1, it is possible that an unknown helicase or exonuclease can contribute to MMR repair in the
absence of EXO1. DNA polymerase δ is a strong candidate, as well as the helicases BLM and/or WRN
with minor contributions [50–54,56–58,65]. However, unknown contributors with a more prominent
role in MMR may still remain to be discovered.

EXO1 gene variants have been associated with different types of cancers. Interestingly, large
GWAS analyses support that specific mutations in domains required for interaction with other
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proteins in EXO1 are more commonly occurring in particular types of cancer, as summarized in
Table 2 [107–112,116]. The central role of EXO1 in replication and post-replication processes, including
checkpoint activation, suggests that EXO1 dysfunction could alter other DNA repair pathways, leading
to replication stress followed by genomic instability and the development of cancer. Deregulation of
EXO1 protein levels in tumors is commonly reported [121,122]. Furthermore, EXO1 has been addressed
as a candidate gene in cancer therapeutics through its increased expression in tumors [123]. Given
the large number of processes that involve EXO1, it is not surprising that EXO1 has emerged as a
critical protein in cancer research. Nevertheless, several enigmas remain and the EXO1 field is fertile
for future explorations.
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