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A B S T R A C T

Ageing is arguably the most complex phenotype that occurs in humans. To understand and treat ageing as well as
associated diseases, highly specialised technologies are emerging that reveal critical insight into the underlying
mechanisms and provide new hope for previously untreated diseases. Herein, we describe the latest develop-
ments in cutting edge technologies applied across the field of ageing research. We cover emerging model or-
ganisms, high-throughput methodologies and machine-driven approaches. In all, this review will give you a
glimpse of what will be pushing the field onwards and upwards.

1. Introduction

Ageing is the most profound risk factor for most diseases, and
methodologies to study the ageing process are therefore of critical im-
portance. In the last one hundred years the field has experienced rapid
progress from the discovery that dietary interventions alter the pace of
ageing in rats to the development of artificial intelligence algorithms
that can predict age with high accuracy (Bobrov et al., 2018; McCay
and Crowell, 1934). However, the field has branched out immensely
with numerous sub-specialties focusing on a variety of themes within
ageing research all with specialised techniques. Here we will discuss
some of the most cutting-edge technologies in three broad areas:
emerging model organisms, high-throughput methodologies for orga-
nismal investigations and machine learning approaches.

2. Model systems for ageing research

Research on ageing has always been driven by studies on a wide
variety of different model systems (Table 1). These studies have led to
the identification of drivers of the ageing process as well as to the
identification of novel ageing interventions. Each model system pro-
vides its unique strengths, however in particular, cross-species com-
parative studies have helped to further understand evolutionarily con-
served ageing mechanisms. Rodent animal models have been a
cornerstone in ageing research but have been extensively reviewed by
others (Folgueras et al., 2018; Kõks et al., 2016; Mitchell et al., 2015)
and will not be further discussed here.

2.1. Naturally short-lived ageing-model organisms

Traditional model organisms such as Drosophila melanogaster and
Caenorhabditis elegans have contributed tremendously to our current
knowledge about the biology of ageing. The advantages of such or-
ganisms are plentiful, as they are cheap, simple to handle and easy to
genetically manipulate. C. elegans straight forward germline genetics as
a self-fertilizing hermaphrodite is well-described, the advantages and
disadvantages of this model organism for ageing studies has been much
discussed (Johnson, 2003), however the ability to easily establish RNAi
libraries is a key advantage of this organism (Timmons et al., 2001). D.
melanogaster has likewise been widely used in ageing research and
while being a short-lived organism has physiology that more closely
resemble mammals than nematodes, including for example replicating
cells (Helfand and Rogina, 2003).

A testimony to the importance of short lived organisms was the
central discovery that a mutation in a single gene, Age-1, results in
lifespan extension in C. elegans (Friedman and Johnson, 1988). This was
followed by the identification of multiple genes and compounds that
influence health- and lifespan in D. melanogaster and C. elegans (Hall
et al., 2019; Uno and Nishida, 2016). The ease of comparing different
age groups makes short-lived animals of further interest for ageing
studies, as highlighted in recent studies that revealed a correlation
between the microbiota composition and the health- and lifespan in D.
melanogaster and C.elegans (Clark et al., 2015; Han et al., 2017). Fur-
ther, single-cell transcriptomic changes were studied in the ageing fly
brain which revealed decreased gene expression as well as changes in
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cell type composition with age (Davie et al., 2018). Clearly, these short-
lived organisms remain a strong model system for the mechanistic
understanding of ageing.

Besides these traditional models other less studied short-lived ani-
mals have recently been recognised for providing insight into the
ageing phenomenon. For instance, the African turquoise killifish has
proven to be a unique platform for studying ageing mechanisms (Harel
et al., 2015). Notably, the lifespan of different turquoise killifish strains
varies even under identical conditions (4–8 months) and has been
shown to be influenced by genes that are linked to the sex-determining
region (Valenzano et al., 2015). Moreover, middle-aged fish treated
with the gut microbiota of young fish showed improved lifespan as well
as increased locomotor activity, which was validated by video-tracking
approaches (Smith et al., 2017).

Another interesting organism that provides unique opportunities to
study ageing mechanisms is the honey bee Apis mellifera. A. mellifera has
a quite variable lifespan, which is dependent on seasonal aspects and on
their caste and task within the colony most strikingly with a ∼10-fold
increase in lifespan when a female larvae, that is set to become a queen,
is exclusively fed a diet of royal jelly (Münch and Amdam, 2010). Bees
provide opportunities to also study social behavioral effects on the
ageing process, as for instance, older bees repositioned to nursing tasks
revealed a reversal of some brain ageing features (Baker et al., 2012).
The possibility to track short-lived animals over their whole lifespan as
well as over several generations makes them particularly interesting for
ageing studies.

Clearly genes play an important role in impacting the lifespan of
organisms. It is therefore critically important to validate pathways
found in simpler organisms with changes in mammals and preferably

humans. Nevertheless, these short-lived model organisms have proven
potent to delineate mechanisms and pathways central to human ageing.
One small example is the importance of the insulin receptor and nu-
trient sensing in mammalian longevity that were catalyzed by studies
on daf-2 mutants in C.elegans (Kenyon et al., 1993) and InR mutants in
drosophila (Tatar et al., 2001).

2.2. Naturally long-lived ageing model organisms

Another group of organisms that present an exciting opportunity to
study basic molecular mechanisms of ageing and the pathomechanism
of age-related diseases are naturally long-lived animals. Since some
long-lived animals tend to show a decreased rate of age-associated
diseases such as cancer, it suggests that they may evolved specific
protection mechanisms against stress. The lack of correlation between
cancer risk and body size or lifespan is known as Peto’s paradox (Peto
et al., 1975). Genomic studies on the African elephant have tried to
explain this phenomena through the identification of gene duplication
events resulting in 20 copies of the tumour suppressor gene TP53,
whereas the human genome contains one copy (Abegglen et al., 2015;
Sulak et al., 2016). The expression of multiple TP53 genes leads to
enhanced p53 signaling, revealed by increased apoptosis signaling upon
DNA damage induction in elephant cells. Increased genome main-
tenance capacity has been also revealed for other long-lived species
such as the bowhead whale (Keane et al., 2015), bats (Zhang et al.,
2013) and naked mole rats (MacRae et al., 2015). Importantly, not all
long or short-lived species have had their genomes sequenced (for ex-
ample S. microcephalus), and hence there is undoubtedly vast dis-
coveries hidden away in the genomes of these organisms.

Table 1
Examples of organisms and human disease models in ageing research. In red are understudied organisms that could give unique insight into ageing. Maximum
lifespans for animal species extracted from AnAge database (Tacutu et al., 2018). Human disease models are more variable in nature and hence mean and/or median
lifespan is included for these based on publications mentioned in table.

Species Maximum Lifespan References

Drosophila melanogaster ∼15 weeks (Pletcher et al., 2002; Zou et al., 2000),
Caenorhabditis elegans ∼8 weeks (Friedman and Johnson, 1988; Klass, 1977),
Eviota sigillata ∼8 weeks (Depczynski and Bellwood, 2005)
Nothobranchius furzeri ∼13 months (Valdesalici and Cellerino, 2003),
Apis mellifera Worker: ∼5 months

Queen: ∼8 years
(Corona et al., 2005; Page and Peng, 2001),

Saccharomyces cerevisiae ∼ 14 days (Burtner et al., 2009; Sinclair and Guarente, 1997),
Mus musculus ∼ 4 years (Ball et al., 1947)

Rattus norvegicus ∼ 4 years (McCay and Crowell, 1934)
Canis lupus familiaris ∼24 years (Kaeberlein et al., 2016)

Heterocephalus glaber ∼31 years (Buffenstein and Jarvis, 2002)
Myotis brandtii ∼40 years (Seim et al., 2013)
Psittacus erithacus ∼50 years (Aydinonat et al., 2014)

Diomedea exulans ∼50 years (Hall et al., 2004; Lecomte et al., 2010)

Loxodonta africana ∼65 years (Abegglen et al., 2015)

Homo sapiens ∼120 years (Crawford et al., 2006; Huang et al., 2006; Keijzers et al., 2017; Sebastiani and Perls, 2012; Wilson
et al., 2015) denotes median* or mean#Cockayne syndrome ∼8 years#

Hutchinson-Gilford-Progeria
syndrome

∼13 years*

Ataxia-telangiectasia ∼19–25 years*
Werner syndrome ∼54 years*
Centenarians > 100 years

Aldabrachelys gigantea ∼150 years (Quesada et al., 2019)

Balaena mysticetus ∼200 years (Keane et al., 2015; Seim et al., 2014)

Arctica islandica ∼500 years (Abele et al., 2008; Munro and Blier, 2012)
Somniosus microcephalus ∼400 years (Nielsen et al., 2016)
Leiopathes sp. ∼4000 years (Roark et al., 2009)

Pinus longaeva ∼5000 years (Lanner and Connor, 2001)

Anoxycalyx (Scolymastra) joubini ∼15,000 years (Dayton, 1979; Gatti, 2002)
Hydra vulgaris unknown (Martínez, 1998)
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However, most of these long-lived animals are challenging for
ageing research due to the difficulty in keeping them in captivity and
the high costs to implement experiments. Nevertheless, latest advances
in sequencing technologies have allowed the expansion of cross-species
comparative studies and investigations on so far un-investigated long-
lived model organisms (Seim et al., 2014; Tian et al., 2019). Interest-
ingly, there are still unexplored animals with extreme longevity such as
several species of antarctic seasponge (such as Anoxycalyx (Scoly-
mastra) joubini) that may live for several thousand years (Dayton, 1979;
Gatti, 2002). However, a creature dwelling at the bottom of the Ant-
arctic ocean has a vastly different environment than humans which will
impact ageing in numerous ways. For this reason, investigating animal
models living in habitats very similar to humans may be of interest.
Here, the recently commenced project looking into interventions tar-
geting ageing in companion dogs may be of particular importance
(Kaeberlein et al., 2016).

2.3. Genetic components of human ageing

The study of inherited human premature ageing disorders has
emerged as a seminal approach in ageing research (Kipling et al., 2004).
Importantly, the identification of the underlying genetic mutations re-
vealed that these disorders are characterised by compromised genome
integrity, corroborating the idea that accumulation of DNA damage
possesses a key role in ageing (Hoeijmakers, 2009). Notably, these are
monogenic diseases, thus, paving the way for the illumination of the
specific molecular defects involved in ageing and further allowing for
direct manipulation of the implicated pathways. Common approaches
such as utilizing fibroblasts or stem cells derived from patients, have
yielded critical information into the disease mechanisms as well as
normal human ageing processes. For instance, the cellular phenotype of
Hutchinson-Gilford progeria syndrome, as well as Cockayne Syndrome,
has been largely elucidated (Cleaver, 1969; Merideth et al., 2008;
Scaffidi and Misteli, 2005; Scheibye-Knudsen et al., 2012). In addition,
some mouse models of premature ageing have further underscored the
role of declining levels of the metabolite NAD+ and NAD+-dependent
proteins in age-related metabolic dysfunction (Fang et al., 2014;
Scheibye-Knudsen et al., 2014). Importantly, age-dependent NAD+

decline, as well as a number of other features observed in premature
ageing models, are also observed in normal ageing indicating that these
may represent suitable models of human ageing (Gomes et al., 2013;
Mouchiroud et al., 2013).

Interestingly, mouse models of premature ageing do not recapitulate
all phenotypic features seen in the human diseases and often display
milder phenotypes indicative of more redundancy in ageing-associated
pathways in mice. In addition, age-related neuropathologies are cur-
rently poorly reflected in mouse models (Burns et al., 2015; Jucker,
2010).

An alternative to premature ageing diseases, are studies with ex-
ceptionally long-lived people. Centenarians have long been a subject of
curiosity, owing to the mystery of how these people retain their health
at very advanced age. Here, research has identified some of the factors,
genetic as well as environmental, which appear to protect from age-
related disease. Of importance, studying centenarians permits the
consideration of key variables, including demography, population ge-
netics, lifestyle, and cultural habits, for instance highlighted by findings
illustrating health-promoting effects of social relationships and higher
socioeconomic status (Seeman and Crimmins, 2001; Yashin et al.,
1999). Accordingly, the study of centenarians has shed novel light on
the role of several molecular mechanisms in ageing, including im-
munosenescence (Effros et al., 1994), inflammation (Franceschi et al.,
2005), gut microbiota (Biagi et al., 2010), and mitochondrial DNA
genetics (Salvioli et al., 2008). There is an apparent familial trait for
extreme longevity (Perls et al., 2000), and close to 300 single nucleo-
tide polymorphisms (SNPs) have been implicated (Sebastiani et al.,
2013). In particular, SNPs in the genes of apolipoprotein E (APOE) and

the forkhead box O3A (FOXO3A) have been extensively studied and
found to be significantly associated with exceptional longevity (Revelas
et al., 2018). However, the significant variants display relatively
modest effects sizes, supporting the idea that the genetic component
consists of a large number of genetic modifiers, each contributing with
a minor effect on human ageing (Sebastiani and Perls, 2012). Accord-
ingly, the phenotype of centenarians is highly complex, and the mole-
cular core remains poorly understood. The emergence of new high-di-
mensionality and ‘Omics’ technologies, including genetics, epigenetics,
metagenomics, metabolomics, proteomics, glycomics, etc. (Lorusso
et al., 2018), has allowed for the identification of genetic signatures
that characterise the nature of centenarians. For instance, lipidomic
profiling of individuals with exceptional longevity using mass spectro-
metry has been able to discriminate between adult, aged and cen-
tenarian with a 90 %–100 % accuracy (Jové et al., 2017; Pradas et al.,
2019).

In summary, animal and human models of extreme ageing have
given us instrumental insight into ageing and will unquestionably
continue to help us to deepen our knowledge of the ageing process.

3. Machine driven approaches to the Ageing riddle

Ageing represents the most complex combination of molecular,
cellular and organismal features seen in organisms (Andreassen et al.,
2019). Given the vast complexity of the ageing process machine
learning algorithms are emerging as key tools for prediction, discovery
and treatment investigations. For instance, both of the first algorithms
to accurately determine the age based on epigenetic changes, the
Horvath and Hannum clocks, used elastic net regression (Hannum et al.,
2013; Horvath, 2013). Notably, using deep neural networks combined
with feature importance analysis it is possible to determine which
features contribute most to the predictive power of an algorithm, a
technique that revealed that albumin is a strong predictor of ageing
when considering common blood samples values (Putin et al., 2016).
While blood samples are readily available, age-prediction from even
simpler datasets such as facial photographs appear to be able to predict
ageing with high accuracy (Bobrov et al., 2018). In the context of
treatments, machine learning is showing great potential in terms of
drug design (Zhavoronkov et al., 2019), target identification
(Madhukar et al., 2019) and outcome prediction (Chekroud et al.,
2016). Thus, in the last decades numerous great advances has been
made in machine driven approaches to ageing (See Fig. 1 for a time-
line).

To facilitate understanding of the plenitude of organisms and their
different ageing phenotypes, there is a great need to observe ageing
models utilizing longitudinal tracking to accurately capture the com-
plex set of parameters required for the characterization of ageing across
different species. Here, we describe state-of the art methods meeting
this demand in different fields, from cell-based and microscopy assays,
microfluidics, automatic analyses of animal models with computer vi-
sion technologies, and the assessment of human longevity in clinical
studies (Fig. 2).

3.1. Monitoring ageing using microscopy-based assays

Robotics and automation are increasingly being used in biological
investigations likely allowing higher reproducibility and the possibility
of casting a much wider net for mechanistic exploration. A prime ex-
ample is whole genome CRISPR or siRNA screens where>20,000
genes are manipulated, and readouts are typically made using high-
content microscopy. High-content microscopy can also be used in more
specialised approaches such as the Comet-chip assay were DNA damage
can be measured in individual cells embedded in microwells (Albert
et al., 2016; Sykora et al., 2018; Wood et al., 2010). High-content mi-
croscopy has also been applied to drugs screens for compounds that
reduce ageing features such as beta-galactosidase expression, cellular
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features of progeria or neurite outgrowth in iPSC-derived neurons
(Kubben et al., 2016; Sherman and Bang, 2018; Vatolin et al., 2019).
These types of investigations are increasingly being adapted to more
complex cell-based assays such as in 3D organoid cultures and even
pursued in high-throughput ‘organ-on-a-chip’ applications (Probst
et al., 2018; Williamson et al., 2018). The use of these assays is thus
quickly becoming essential in ageing research, particularly in the area
of interventions testing.

The short life cycle of single-cell organisms makes them a particu-
larly interesting model for ageing research. Despite their inherent
simplicity, monitoring a panel of different features of unicellular or-
ganisms during long-term culture can be challenging and labor-in-
tensive. Since the early attempts of tracing the ageing process in yeast
in the late 1950s (Mortimer and Johnston, 1959), time-consuming yeast
replicative lifespan assays (taking up to 4 weeks) have been simplified
through extensive automation. The most promising approach to date
combines microfluidic platforms with continuous high-resolution ima-
ging (Lee et al., 2012; Zhang et al., 2012). By developing the automated
tracking of entire life cycles of single yeast cells in microfluidic systems
such as the high-throughput yeast ageing analysis chip (HYAA-Chip)
(Jo et al., 2015) or the more advanced Yeast Replicator (Liu et al.,
2015), new prospects have opened up in phenotype tracing. By al-
lowing the simultaneous life-long monitoring of up to 16 different
strains of yeast, automated microfluidic platforms overcome former
limitations in the usage of yeast as broad genetic screening platforms in
ageing research. Going beyond the scope of observing longevity-related
changes in morphology, microfluidic techniques also allow for the si-
multaneous monitoring of gene expression patterns over lifespan
(Kaiser et al., 2018). Moreover, they can help to estimate the relevance
of different parameters within the ageing process, including different

growth environments or cell-to-cell heterogeneity, among others, de-
pending on the set-up of the respective microfluidic platform (Chen
et al., 2017).

Microfluidic culture systems are not only attractive for unicellular
organisms, but hold great potential for monitoring nematodes and po-
tentially other species. Foremost, culturing of C. elegans in microfluidic
systems has set an example for the great advantages of automated long-
term culture (Atakan et al., 2019). The novel microfluidic culture
platform allows for automated video tracking over entire lifespans, as
well as for individual phenotyping and simultaneous implementation of
drug treatments at a high-throughput level. In this manner, tracking of
and interference in the ageing process can be achieved at the same time.

3.2. Non-invasive, automated longitudinal tracking in model organisms of
ageing

A battery of methods exists to assess model organisms over long
time periods; however, their application could be implemented to even
greater potential. This recent realization and progress is exemplified by
a comprehensive overview of age-related readouts in mice (Bellantuono
et al., 2020) D. melanogaster (Gaitanidis et al., 2019), and C. elegans
(Stroustrup et al., 2013). These readouts can be expanded on in various
forms: continuous deep-learned computer vision tracking of model or-
ganisms with age (www.tracked.bio), comprehensive in vivo imaging
and the combination of these systems with a spectrum of physiological
sensors to rapidly modulate ageing.

An approach that has been repeatedly verified across various species
is computer vision technology. This technology has already been widely
applied to various model organisms (Nakamura et al., 2015; Robie
et al., 2017), however, its application to the longitudinal measurement

Fig. 1. A timeline of recent methodological advances in ageing research.
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of ageing is lacking, albeit there are several applications on the rise
(Stroustrup et al., 2013). The inspiration for such long-term tracking
comes from knowledge gained from piecemeal and cross-sectional ap-
plications from, for instance, animal behavior experiments and human
gait analysis (Bair et al., 2019; Studenski et al., 2011). The same
technology has been applied longitudinally on a wild population of
chimpanzees (Schofield et al., 2019). Hence, applying longitudinal
tracking for lab models represents a great opportunity to further our
understanding of ageing and particularly towards the development of
interventions; the last piece to this puzzle is automated methods.

Another mode to longitudinally assess model organisms is via in vivo
imaging, such as the use of MRI, microCT, and other in vivo imaging
methods (Dall’Ara et al., 2016). The techniques themselves are not new
and have been extensively used in mammalian animal models, how-
ever, progress in MRI techniques now allow visualization and quanti-
fication at a single cell level (Chung et al., 2020; Tsurugizawa et al.,
2020). Given the non-invasive nature of these techniques, they prove

advantageous to other strategies to obtain molecular and physiological
dynamics i.e. purely histological studies, resorting to traditional bio-
chemical techniques, etc. In this context, non- or minimally-invasive
sensors measuring a variety of outputs are also being employed from
telemetry ECG/EEG (Axsom et al., 2019), activity/temperature moni-
tors (Meyer et al., 2017), to in vivo metabolism (Brockway et al., 2015;
Pedersen et al., 2018). Altogether, these physiological sensors can be
used for extracting much richer information from each of the above
referenced models.

3.3. Advances in comprehensive health assessment in humans

With the rapid increase in elderly people across the globe it is a
priority to develop automated ways to assess quality of life for im-
proving life- and healthspan within longitudinal human studies. One
example of health function acquisition and assessment among elderly
people is through a pipeline of Comprehensive geriatric assessment

Fig. 2. New technologies for monitoring age- and associated features. Automation and high throughput methodologies are being deployed across the ageing research
space: from single cell approaches to human investigations.
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(CGA) that includes measurements of multiple parameters that take into
account both mental and physical states of the studied population (Ellis
et al., 2017). Although this approach aims to identify the most effective
ways to improve quality of life and independence among elderly po-
pulations worldwide, it strongly depends on the country where the
assessment is made as well as on their healthcare system (Wilhelmson
et al., 2020). Moreover, accurate assessment of multiple parameters can
be time- and cost-intensive. Therefore, “every day” tracking systems as
well as more precise and automated approaches for large-scale data
analysis are needed to more effectively evaluate health function both of
individuals and of populations.

An example of a comprehensive and multidimensional longitudinal
study to understand ageing processes in humans is the Baltimore
longitudinal study of Ageing (BLSA). This program considers biological,
behavioral and environmental factors that affect changes that occur
during normal ageing. The advantage is that BLSA is a continuous study
on volunteers that includes research on different aspects of ageing and
age-associated diseases (Lin et al., 2011; Nastasi et al., 2018; Vidoni
et al., 2018). Another example of a comprehensive study is via perso-
nalised healthcare monitoring using different wearable devices that
may track diurnal rhythm patterns, body temperature, heart rate, etc.
These devices can be used not only for daily monitoring of standard
health quality parameters, but also for preventing unexpected health
failure, for instance for people with epilepsy (Ryvlin et al., 2018).
Moreover, wearable devices that measure heart rate show quite good
correlation with standard ECG (Georgiou et al., 2018).

The direction of comprehensive health assessment and personalised
medicine is also actively developed by industry in the application of
multi-omics approaches combined with machine learning to develop
novel tools for accurate assessment of personal health (Hou et al., 2020;
Shomorony et al., 2020). This approach also includes coupling whole
genome sequencing with full-body MRI using advanced imaging pro-
tocols and data quantification to find age-related chronic disease risk
factors (Perkins et al., 2018). The development of AI-based whole-body
MRI has also progressed rapidly in other age-related diseases like
cancer (Lavdas et al., 2019).

In summary, the combination of high-throughput and automated
methodologies can create a finer and more accurate understanding of
the progression of ageing on the single-cell, whole model organism, and
human level. Furthermore, the development of interventions to alle-
viate ageing phenotypes may be identified faster and more cheaply with
such technologies.

4. Machine learning for biomarker discovery

One of the key roadblocks in the development of ageing research
therapeutics is the discovery of robust biomarkers. Machine learning
techniques as well as novel image- and text-based mining strategies are
emerging to assist in biomarker discovery in the ageing field (Fig. 3).

4.1. Image based biomarkers

Large image datasets such as digitised histology images or MRI-
image banks can be used for biomarker discovery to delineate features
of ageing (Franke et al., 2010; Janowczyk and Madabhushi, 2016).
Machine-aided image analysis based on pathology samples is a rapidly
growing area in diagnostics and research applications and has en-
ormous scope for allowing population-based, large scale analysis of
disease causation and pathogenesis. For instance, such applications are
increasingly used in the oncology field for diagnostic and discovery
purposes (Chen et al., 2019; Xia et al., 2018), with recent work as-
serting that AI-assisted image analysis can outperform trained pathol-
ogists for cancer diagnosis in some cases (Zhang et al., 2019). The use of
convolutional neural networks has shown additional promise in der-
matology, cardiology and other clinical specialties where pattern re-
cognition is essential (Esteva et al., 2017; Fauw et al., 2018; Isin and

Ozdalili, 2017). Further, these types of algorithms are emerging as
potent tools for drug discovery where structural information about
small molecules and protein binding pockets allow prediction of new
pharmaceuticals (Zhavoronkov et al., 2019). This approach is also used
in molecular biology where, for example, it is currently the most
powerful tool to predict protein structures based on amino acid se-
quences (Senior et al., 2020). Clearly, machine learning approaches are
becoming tremendously powerful in all aspects of life science and will
be central in understanding the highly complex patterns in ageing re-
search.

4.2. Text-based machine learning approaches

Text-mining methods in biomedical research have been applied to
the massive body of the scientific literature and to the narrative text of
patient records describing phenotypes and treatments (Jensen et al.,
2012). In ageing research, age-associated terms have been extracted
from millions of PubMed abstracts yielding a comprehensive phenome
landscape of human ageing (Andreassen et al., 2019), identifying the
interplay between different age-associated features and previously de-
fined hallmarks of ageing (López-Otín et al., 2013). Further, datamining
endeavors have revealed relationships between certain genes and age-
associated features (Fernandes et al., 2016). Indeed, multiple databases
have been created where diverse datasets describing ageing can be
explored (see more at http://genomics.senescence.info/). In materials
science research, knowledge present in the literature has been encoded
as information-dense word representations learned without human su-
pervision (Tshitoyan et al., 2019). Such representations capture com-
plex concepts and can be used to recommend materials for functional
applications suggesting that some latent knowledge of future dis-
coveries may be embedded in past publications. A similar approach
could be employed in ageing research with the potential to point at new
opportunities for discovery. Accordingly, text-mining unstructured rich
phenotypic data from patient records in population-wide registers
presents the potential for use in large scale cohort studies covering
millions of individuals (Westergaard et al., 2019).

4.3. Next generation biomarkers of ageing

Given the complexity of ageing it is not surprising that accurate
biomarkers reflecting the ageing process have been difficult to find.
Nevertheless, with the advent of new machine learning approaches,
several ageing-clocks have been developed that attempt to accurately
describe changes that occur over time or with age-associated patholo-
gies. These clocks are especially useful for estimating the biological age
of individuals in order to identify interventions for detrimental age
progression. Among the first were the epigenetic clocks from Hannum
and Horvath where the methylation level at CpG sites appear to predict
the chronological age of an individual (Hannum et al., 2013; Horvath,
2013) Subsequently a similar clock was developed for mice (Petkovich
et al., 2017). Now, multiple ageing clocks have been developed both on
omics like data (transcriptomics (Fleischer et al., 2018), proteomics
(Ferrucci and Tanaka, 2018; Lehallier et al., 2019), metabolomics
(Hertel et al., 2016) and microbiomics (Galkin et al., 2018)), clinical
imaging data such as MRIs (Franke et al., 2010), blood based bio-
chemistry (Mamoshina et al., 2018) and simple facial photographs
(Bobrov et al., 2018). However, an oft-forgotten consideration is that
the predictive value of these clocks is not necessarily their accuracy in
predicting chronological age, but rather their utility in accurately de-
termining mortality and morbidity risk. Notably, age-associated DNA
methylation changes display robust predictive ability of all-cause
mortality in a variety of tissues (Bocklandt et al., 2011; Chen et al.,
2016, 2016; Hannum et al., 2013; Lu et al., 2019).

Several novel approaches to identifying biomarkers of human
ageing include using deep neural networks to predict chronological age
based on routine blood tests (Putin et al., 2016) or metabolomic data
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(Rist et al., 2017). In addition, a deep neural network has been trained
on metagenomics from gut microbiota in order to generate a micro-
biomic clock capable of predicting age based on microbiotic profiles as
well as identifying specific taxa as biomarkers of ageing (Aleman and
Valenzano, 2019; Galkin et al., 2018). An attractive application of deep
neural networks is using data that can be obtained with non-invasive
techniques. Such a method has been demonstrated by the development
of a biological clock using high-resolution images of eye corner wrinkle
patterns termed the PhotoAgeClock (Bobrov et al., 2018). In addition,
multiple regression on magnetic resonance images has been used to
develop a clock predictive of cognitive ageing (Vemuri et al., 2018).
Excitingly, such AI-assisted predictors could be used clinically in the
future to help stratify and predict patients who will suffer from ad-
vanced cognitive decline and assist with interventions (Graham et al.,
2019).

In total, machine learning approaches are fast becoming a stable
tool in all areas of science and will without doubt be essential for our
attempt to develop interventions against most chronic diseases and
perhaps the ageing process itself.

5. Final remarks

An incredible growth in methodologies in ageing research has oc-
curred in the last decades. This has been driven in large part by the
emergence of new technologies, the increasing availability of data and
the development of faster computational power. Combined with the use
of novel model systems, we may be on the cusp of a new era in ageing
research where comprehensive analyses will allow us to pinpoint the
multitude of processes driving ageing, and perhaps allow us to stop
them. For example, while it would previously take years to develop
possible drug candidates it may now take as little as a few weeks
(Zhavoronkov et al., 2019). Automation in both drug discovery, bio-
markers and ageing phenotyping will drive the field forward and it is
likely that we will find potent small molecules and other interventions
that may reduce the rate of ageing. Indeed, we are likely just scratching
the surface considering that the most potent drug to reduce the pace of
ageing in mammals, rapamycin, increases lifespan by only 30 %
(Harrison et al., 2009). Here the emerging longevity industry spear-
headed by companies such as Unity, Calico, Insilico Medicine, Human

Fig. 3. Machine learning in ageing research. Text-mining and image-based data repositories are increasingly being used in combination with AI-assisted and
machine-learning techniques to support the search for novel biomarkers that characterise ageing. Such age-predictive clocks based on a multitude of these data inputs
have the power to delineate both pathogenic and delayed ageing, and hold promise to stratify patients and/or test ageing interventions.
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Longevity Inc., and many others will likely play a key role (de
Magalhães et al., 2017). In conclusion, the future is bright!
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