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Abstract 

Dietary intake of long-chain fatty acids (LCFA) plays a causative role in insulin resistance 

and risk of diabetes. Whereas LCFA promote lipid accumulation and insulin resistance, diets 

rich in medium-chain fatty acids (MCFA) have been associated with increased oxidative 

metabolism and reduced adiposity, with little deleterious effects on insulin action. The 

molecular mechanisms underlying these differences between dietary fat subtypes are poorly 

understood. To investigate this further, we treated C2C12 myotubes with various LCFA 

(16:0, 18:1n9, 18:2n6) and MCFA (10:0, 12:0), as well as fed mice diets rich in LCFA or 

MCFA, and investigated fatty acid-induced changes in mitochondrial metabolism and 

oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased 

mitochondrial oxidative capacity and less oxidative stress than LCFA-treated cells. These 

changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-

fed mice exhibited increased energy expenditure, reduced adiposity and better glucose 

tolerance compared to LCFA-mice. Dietary MCFA increased respiration in isolated 

mitochondria, with a simultaneous reduction in reactive oxygen species generation, and 

subsequently low oxidative damage. Collectively our findings indicate that in contrast to 

LCFA, MCFA increase the intrinsic respiratory capacity of mitochondria, without increasing 

oxidative stress. These effects potentially contribute to the beneficial metabolic actions of 

dietary MCFA.  

 

Key Words 

Metabolic disease, medium-chain fatty acids, mitochondrial metabolism, oxidative stress, 

insulin signalling 
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Introduction 

The most common metabolic disorders in our western society (including obesity and insulin 

resistance) have arisen to a great extent from excess nutrient intake, especially in the form of 

fat. Intake of diets rich in long-chain fatty acids (LCFA, C>16), the most common fatty acid 

(FA) type in western diets, is associated with disturbances in glucose homeostasis and insulin 

action (1, 2). Many mechanisms have been proposed to underpin the deleterious effects of 

LCFA on metabolic health, including increased inflammation, overactivation of stress-related 

pathways and inappropriate lipid accumulation in non-adipose tissues (1, 3). 

Interestingly, not all dietary fats induce the same degree of metabolic dysfunction. Our group 

and others have shown that intake of equal-caloric diets rich in medium-chain fatty acids 

(MCFA, C8-C12) decreases adiposity (4-6) and increases energy expenditure (7, 8) and 

avoids many of the detrimental effects associated with LCFA intake. The increased energy 

expenditure suggests that FA are funnelled into oxidative versus storage pathways, and this 

has previously been suggested to be due to enhanced cellular uptake and entry of MCFA into 

mitochondria (especially in the liver) for oxidation. In a recent study we showed that high-fat 

diets enriched with MCFA caused a marked induction in mitochondrial oxidative capacity in 

muscle, over and above that induced by a LCFA high-fat diet, suggesting that enhanced 

myocellular oxidation of MCFA might also be a key pathway for oxidative disposal of this 

class of FA (8). In conjunction with the increase in markers of mitochondrial metabolism, 

MCFA also prevented lipid accumulation and insulin resistance in muscle, with similar 

glucose uptake and muscle triglyceride levels in MCFA-fed animals compared with lean 

animals fed a low-fat diet (8). 

In this study, we have used in vitro and in vivo systems to further characterise the disparate 

metabolic effects of MCFA and LCFA in muscle. Firstly, we have investigated whether in 

addition to affecting mitochondrial content in muscle, MCFA and LCFA have differential 

effects on the intrinsic bioenergetic capacity of mitochondria. Additionally, as mitochondria 

are a major site for reactive oxygen species (ROS) production and LCFA have been linked 

with oxidative stress (9, 10), we have determined the effect of MCFA and LCFA on ROS 

production and markers of oxidative damage.  
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Methods 

Cell Culture 

C2C12 myoblasts were grown in 1:1 Dulbecco’s Modified Eagle’s Medium (DMEM) and 

Ham’s F-12 Nutrient Mix (Life Technologies, Mulgrave, VIC, Australia), containing 10% 

HyClone bovine calf serum (Thermo Fisher Scientific, Scoresby, VIC, Australia) and 

antibiotics (100 units/ml penicillin and 100 µg/ml streptomycin). Differentiation was induced 

by serum-starvation using 2% horse serum (Life Technologies, Mulgrave, VIC, Australia) 

once 90-100% confluence was reached. Cells were differentiated for 5 days, and 

differentiated myotubes were incubated for 18 hours with individual FA. For the lipid 

treatments, 200 µM FA in ethanol were conjugated to 1% FA-free BSA at 55°C for 1.5 hours 

in differentiation media, the media was filter-sterilized and applied to the cells. Control cells 

were incubated with an equal concentration of BSA and ethanol. For insulin stimulations, 

myotubes were serum-starved for 4 hours (in the presence of the respective FA), stimulated 

with 10 nM insulin for 30 min and lysed immediately in RIPA buffer for immunoblotting 

(see below). 

Succinate dehydrogenase activity 

Cell lysates were used to measured succinate dehydrogenase activity. 10 µl of lysate was 

mixed with 250 µl of reaction cocktail, containing 50 mM KH2PO4, 20 mM succinate, 2.5 

µM Antimycin A, 2.5 mM sodium cyanide and 0.45 mM phenazine methosulphate, in a 96-

well plate. 50 µl of dichloroindophenol (0.72 mM) was added to the wells, and change in 

absorbance measured at 600nm and 30°C. Protein concentration was measured using the 

Bradford method.  

Fatty acid uptake 

For the determination of fatty acid uptake in cells, C2C12 myotubes were grown in 12-well 

plates and treated for 18 hours with 200µM FA as described above. On the day of the assay, 

200µM lauric acid-conjugated media containing 1µCi/ml [1-14C]-lauric acid (MP 

Biomedicals, Singapore) was applied to cells pre-treated with MCFA and 200µM palmitic 

acid-conjugated media containing 1µCi/ml [1-14C]-palmitic acid (Perkin Elmer, Melbourne, 

VIC, Australia) was applied to cells pre-treated with LCFA for exactly 2 hours. Control cells 

received both treatments. After the 2 hour incubation period, the media was acidified with 
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1M perchloric acid, and evolved 14CO2 was captured in 1M NaOH. Acid-soluble metabolites 

(ASM) in the media labelled with 14C were also determined. Cells were scraped into 200µl 1x 

PBS + 0.05% SDS, sonicated, a sub-sample (20µl) taken for protein determination, and the 

remainder used for lipid extraction. Lipids were extracted using 2:1 chloroform:methanol 

following phase separation with 0.6% NaCl, 14C in the lipid phase and aqueous phase 

(representing cell ASM) were determined. Total fatty acid uptake was calculated as the sum 

of FA that were funnelled into oxidation (CO2 + ASM in media + ASM cell counts) and the 

lipid fraction. Protein content was determined using the BCA assay (Pierce, Thermofisher 

Scientific, Scoresby, VIC, Australia). 

Superoxide production in cells 

For the determination of mitochondrial as well as cytosolic superoxide production, C2C12 

myoblasts were grown in black (clear-bottom) 96-well plates, differentiated and treated with 

MCFA and LCFA for 18 hours as described above. On the day of the experiment, FA-

containing differentiation media was replaced with HBSS buffer (Life Technologies, 

Mulgrave, VIC, Australia), also containing FA (conjugated to BSA) and either the 

mitochondrial fluorophor MitoSOX Red (5 µM, in nitrogen-bubbled DMSO), the cytosolic 

superoxide marker dihydroethidium (DHE; 20µM, in nitrogen-bubbled DMSO) or DMSO 

itself. MitoSOX Red and DHE were added from stock solutions in DMSO with the final 

concentration of DMSO being less than 0.2% (v/v). Cytosolic superoxide generation with 

DHE was measured in the absence or presence of the NAD(P)H oxidase inhibitor VAS2870 

(10µM). Time-resolved fluorescence was determined for 1 hour using a BMG Labtech 

FLUOstar OPTIMA platereader and 485nm/590nm excitation/emission filters. Changes in 

fluorescence in the MitoSOX Red- or DHE-treated cells were corrected for slope observed in 

the DMSO-treated cells (for each individual FA treatment). Results are expressed as change 

in fluorescence/min/mg protein. For the determination of protein content, media was removed 

from the wells, 10 µl 1 M KOH added to lyse the cells, topped up with 190 µl of ddH2O, and 

protein concentration measured using the Bradford method (Bio-Rad Laboratories, Regents 

Park, NSW, Australia). 

Glycogen synthesis 

C2C12 myotubes were grown in 12-well plates and treated with 200µM FA as described 

above. On the day of the assay, cells were serum-starved for 4 hours in the presence of the 
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respective FA, followed by a 1-hour incubation in serum-free media containing FA and 

4µCi/ml 14C-glucose (Perkin Elmer, Melbourne, VIC, Australia), and in the absence (basal 

state) or presence (insulin-stimulated state) of 100nM Insulin. Cells were washed 3 times in 

PBS, scraped into 100µl 1M KOH and heated for 15min to 75°C. A sub-sample (10µl) was 

taken for protein determination. To the remainder, 30µl 25mg/ml glycogen, 20µl saturated 

Na2SO4 and 450µl ice-cold ethanol was added, the mix vortexed and frozen for 30min at -

80°C, followed by a centrifugation step (10min, 13000 rpm, 4°C). Pellets were washed by 

resuspension in 50µl ddH2O, followed by addition of 1ml ice-cold ethanol and 

recentrifugation. The final pellet was resuspended in 50µl ddH2O and counted for 

radioactivity.  

Animal maintenance 

Eight-week old male C57BL/6J mice were purchased from the Australian Resource Centre 

(Perth, Australia). Mice were maintained in a temperature-controlled room (22±1°C) with a 

12 h light/dark cycle and ad libitum access to food and water. After 1 week on a standard 

low-fat chow diet (CHOW; 8% of calories from fat, 21% of calories from protein, 71% of 

calories from carbohydrate; Gordon’s Specialty Stock Feeds, Yanderra, NSW, Australia), 

mice were randomly allocated to remain on the CHOW diet or to receive a diet enriched in 

either MCFA or LCFA ad libitum for 8 weeks. The high-fat diet (45% of calories from fat 

[from hydrogenated coconut oil for the MCFA diet and from lard for the LCFA diet], 20% of 

calories from protein, 35% of calories from carbohydrate) was made in-house and is based on 

rodent diet no. D12451 (Research Diets, New Brunswick, NJ, USA). The dietary fatty acid 

composition was described previously (8). Tissue samples were collected from mice at 

09:00–10:00 hours without any prior fasting period. All experiments were approved by the 

Garvan Institute/St Vincent’s Hospital Animal Experimentation Ethics Committee, and 

followed guidelines issued by the National Health and Medical Research Council of 

Australia. 

Determination of body composition and energy expenditure 

Lean and fat mass were measured in mice using dual-energy x-ray absorptiometry (DXA) 

(Lunar PIXImus2 densitometer; GE Healthcare, Little Chalfont, UK). The rate of oxygen 

consumption (VO2) and respiratory exchange ratio (RER) of individual mice were measured 

using an Oxymax indirect calorimeter over 24-hours following an overnight acclimatisation 
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period in the Oxymax cages and a 2-hour settling period (Columbus Instruments, Columbus, 

OH, USA) as previously described (11).  

Glucose tolerance and insulin levels 

Mice were fasted overnight and injected i.p. with glucose (2 g/kg), and blood glucose levels 

were monitored using an Accucheck II glucometer (Roche Diagnostics, Castle Hill, NSW, 

Australia) for 90 min following glucose injection. Plasma insulin levels after overnight fast 

were determined by radioimmunoassay (Linco Research, St Charles, MO, USA). 

Isolation of mitochondria 

Muscle mitochondria (from mixed hindlimb muscle) were isolated by differential 

centrifugation as described previously (12). Briefly, muscle was diced in CP-1 medium (100 

mM KCl, 50 mM Tris/HCl, pH 7.4, and 2 mM EGTA), digested on ice for 3 min in CP-2 

medium [CP-1, to which was added 0.5% (w/v) BSA, 5 mM MgCl2, 1 mM ATP and 2.45 

units ml–1 Protease Type VIII (Sigma P 5380)] and homogenized using an ultraturrax 

homogenizer. The homogenate was spun for 5 min at 500 g and 4°C. The resulting 

supernatant was subjected to a high-speed spin (10,600 g, 10 min, 4°C) and the pellet was 

resuspended in CP-1. The high-speed spin cycle was repeated twice. Protein content was 

measured using the Bradford method. 

Respiration in cells and isolated mitochondria 

For the determination of respiration in C2C12 myotubes, cells were incubated with FA for 18 

hours as described above, trypsinized into 1ml FA-containing media and oxygen 

consumption was measured at 37°C in a Clark-type oxygen electrode (Strathkelvin 

Instruments, Motherwell, Scotland). In isolated mitochondria, oxygen consumption was 

measured in air-saturated respiration buffer (120 mM KCl, 5 mM K2HPO4, 3 mM Hepes, 1 

mM EGTA, 0.3% (w/v) defatted BSA, pH 7.2), which was calculated to contain 406 nmol 

oxygen/ml (13), and to which was added either succinate (5mM) and rotenone (2µM) or 

palmitoyl carnitine (40µM) + 2 mM malate as substrates. Oxygen consumption was measured 

in state II (in the presence of substrate), state III (after addition of 200 µM ADP) and in state 

IV (after addition of 2.5 µg/ml oligomycin). The respiratory control ratios (state III/state IV 

respiration) were above 3.5 for succinate and above 5.0 for palmitoyl carnitine as substrates, 

indicating well-coupled mitochondria.  
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Mitochondrial H2O2 production 

Hydrogen peroxide production in isolated mitochondria was determined by monitoring the 

oxidation of Amplex Ultra Red (Invitrogen, Mount Waverley, VIC, Australia) using a 

FLUOstar OPTIMA fluorescence plate reader, maintained at 37°C. Mitochondria were 

incubated at 0.25 mg/ml in assay medium (120 mM KCl, 3 mM Hepes, 1 mM EGTA, 0.3% 

BSA, pH 7.2 at 37°C) containing 6 u/ml horseradish peroxidase, 30 u/ml superoxide 

dismutase and 0.1 mM Amplex Ultra Red, as described previously (14). H2O2 production was 

determined under 3 conditions: in the presence of succinate (5mM), succinate and rotenone 

(2µM, to inhibit electron backflow towards complex I) and in the presence of palmitoyl 

carnitine (40µM). In separate wells containing assay medium, H2O2 was injected (using on 

board injectors) at concentrations between 0 and 500nM and a standard curve calculated. 

H2O2 production and state II oxygen consumption were used to calculate the percentage of 

electrons which leak out of sequence producing superoxide and subsequently hydrogen 

peroxide (15). Whereas two electrons are needed for the reduction of 1 mol of O2 to H2O2, 

four electrons are transferred in the reduction of 1 mol of O2 to water. Therefore, the percent 

free radical leak (FRL) was calculated as the rate of H2O2 production divided by twice the 

rate of oxygen consumption, and the result was multiplied by 100 (16).  

Lipid accumulation 

Triacylglycerol (TAG) content was determined using a colorimetric assay kit (Triglycerides 

GPO-PAP; Roche Diagnostics, Indianapolis, IN, USA) as previously described (17). For 

diacylglycerol (DAG) and ceramide measurements, lipids were extracted from muscle in 

solvents containing 2 nmol ceramide (17:0) and 10 nmol DAG (17:0/17:0) (18). DAG and 

ceramide levels were measured using a hybrid linear ion trap–triple quadrupole mass 

spectrometer (QTRAP 5500: AB Sciex, Foster City, CA, USA). Ceramide molecular lipids 

were analysed by precursor-ion scanning for protonated dehydrated sphingosine at m/z 264.3. 

DAG molecular lipids were analysed by multiple neutral-loss scanning for ammoniated fatty 

acids. Data were analysed and quantified with LipidView (AB Sciex) version 1.1 after 

isotope correction (19). 

Immunoblotting 
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Lysates were prepared from FA-treated C2C12 myotubes and mouse muscle mitochondria. 

Cells were collected in RIPA buffer (20), sonicated for 5 sec, rotated at 4°C for 2 hrs and 

centrifuged for 10 min at 16,000 g. Mitochondria were isolated as described above, mixed 1:1 

in RIPA buffer and sonicated for 5sec. For both cells and mitochondria, 20 µg of protein was 

denatured in Laemmli buffer at 65°C for 15 min, resolved by SDS-PAGE, electrotransferred 

and immunoblotted, as described previously (21). Immunolabelled bands were quantified 

using ImageJ 1.44p software. 

Measurement of antioxidant protection and oxidative damage 

Glutathione peroxidase (GPx) activity was measured as the decrease in NADPH absorption at 

340 nm and 30°C. A reaction cocktail was prepared by mixing azide buffer (9.2 ml, 50 mM 

NaH2PO4, 0.4 mM EDTA, pH = 7.0 at 30°C, addition of 1 mM Na-azide), glutathione 

reductase (100 µl, 100 u/ml) and GSH (50 µl, 200 mM) into a 1 mg beta-NADPH vial 

(Sigma N0411). Sample and reaction cocktail were mixed and H2O2 (5 µl, 0.042% (v/v)) was 

added to start the reaction.  

Lipid hydroperoxides (LOOH) were measured according to the method by Bou et al. 2008 

(22). Thiobarbituric acid reactive substances (TBARS) and protein carbonyls were measured 

in homogenates as described previously (14). Homogenate protein content was measured 

using the Bradford method. 

Statistical analysis 

All results are presented as mean ± SEM. Results were compared using a one-way ANOVA 

with P<0.05 considered significant, followed by a Fisher’s LSD test. For both the cell culture 

and animal experiments, the mean of each treatment group was compared with the mean of 

every other treatment group.  
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Results 

Effect of FA subtypes on oxidative metabolism and lipid accumulation in C2C12 myotubes 

Incubation of myotubes with the MCFA capric (C10:0) and lauric acid (C12:0) for 18 hours 

significantly increased oxygen consumption (Fig. 1A) and SDH activity (Fig. 1B) in 

comparison to BSA-treated control cells, as well as protein levels of several oxidative 

proteins, including sub-units of the mitochondrial electron transport chain, the master-

regulator of mitochondrial biogenesis PGC1α, the mitochondrial content marker porin and 

the mitochondrial fatty acid transporter CPT1 (Fig. 1C and Supplemental Table 1). The 

observed increase in SDH activity was most likely due to increased protein expression, as 

shown by immunoblotting for SDHa (Fig. 1C). In contrast, treatment of myotubes with 

LCFA, the saturated FA palmitic acid (C16:0), the mono-unsaturated FA oleic acid 

(C18:1n9) and the polyunsaturated FA linoleic acid (C18:2n6), did not significantly affect 

cellular respiration (Fig. 1A), had no effect or caused a decrease in the expression of 

oxidative proteins (Fig. 1C and Supplemental Table 1), and caused a mild decrease in 

succinate dehydrogenase (SDH) activity compared to control cells (Fig. 1B). Protein levels of 

the glucose transporter GLUT4 were unaffected by FA treatment (Fig. 1C).  

Incubation of C2C12 myotubes with LCFA led to an average 5-fold increase in 

triacylglycerol (TAG) accumulation in comparison to BSA-treated control cells. 

Interestingly, myotubes incubated with the MCFA exhibited markedly less TAG 

accumulation compared to the LCFA-treated cells (Fig. 1D). The differences in TAG 

deposition were not due to any differences in FA uptake, as similar levels of uptake were 

observed for both MCFA- and LCFA-treated cells with 14C-labelled fatty acids (Fig. 1E). 

Collectively these results suggest enhanced partitioning of FA towards oxidation with 

MCFA, and the tracer experiments showed that approximately 65% of 14C-lauric acid taken 

up was directed to oxidative pathways (CO2 and ASM), while this was only approximately 

35% with 14C-palmitic acid (data not shown). 

Effect of FA subtypes on oxidative stress in C2C12 myotubes 

In addition to effects on lipid accumulation and mitochondrial metabolism, LCFA have also 

been linked to oxidative stress and the subsequent accumulation of oxidatively damaged 

cellular components (9, 10). We investigated the effect of incubation of C2C12 myotubes 

with LCFA and MCFA on superoxide generation and lipid peroxidation (2 markers 
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examined: lipid hydroperoxides (LOOH) and TBARS). Mitochondrial (Fig. 2A), but not 

cytosolic superoxide generation (Fig. 2B), was significantly increased with all three LCFA, 

but not after MCFA treatment. Cytosolic superoxide was measured in the absence and 

presence of the NAD(P)H oxidase inhibitor VAS2870. Addition of VAS2870 decreased ROS 

generation to approximately 90-95% of the rates measured in the absence of the inhibitor, 

showing that NAD(P)H oxidases have only a minor contribution to cytosolic ROS production 

in C2C12 myotubes (data not shown). Both lipid peroxidation markers followed the same 

pattern as mitochondrial superoxide and were significantly increased after LCFA but not 

MCFA treatment (Fig. 2 C+D).  This highlights that MCFA keep oxidative stress at low 

levels, whereas LCFA lead to substantial increase in mitochondrial ROS production and to 

the accumulation of oxidative damage.  

Effect of FA subtypes on insulin action in C2C12 myotubes 

Excess lipid accumulation, mitochondrial dysfunction and oxidative stress have been 

associated with the development of insulin resistance (1). We next investigated how 

incubation of myotubes with LCFA and MCFA affected insulin-stimulated phosphorylation 

of IRS1 (Tyr612), Akt (Ser473) and GSK3β (Ser9), as well as the insulin-stimulated 

glycogen synthesis rate (Fig 3). Whereas none of the FA had an effect on phosphorylation of 

IRS1, incubation of muscle cells with MCFA significantly increased Akt phosphorylation. In 

contrast, palmitic acid decreased insulin-stimulated Akt phosphorylation substantially, 

whereas no changes were observed with oleic or linoleic acid. Phosphorylation of GSK3β 

was decreased after LCFA but not MCFA treatment, which was accompanied by a significant 

decrease in insulin-stimulated glycogen synthesis rate with all three LCFA (Fig. 3). These 

results suggest that MCFA, unlike LCFA, do not impair insulin action in muscle cells. 

Effect of dietary MCFA and LCFA intake on adiposity, energy expenditure and glucose 

tolerance 

Mice fed a MCFA-rich diet were partially protected from body weight gain and increases in 

adiposity in comparison to LCFA-fed mice (when compared to chow controls) after 8 weeks 

of high-fat feeding (Fig. 4 A+B). The differences in body composition in MCFA- and LCFA-

fed mice can be to some extent explained by differences in energy intake, as cumulative 

calorie intake per mouse over the 8-week feeding period was increased in the MCFA- and 

LCFA-groups when compared to the CHOW-fed mice (CHOW 11.1 ± 0.6; MCFA 12.8 ± 
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0.6; LCFA 12.3 ± 0.6 kcal/day). We did not assess if there were differences in lipid 

absorption between the two diets, however, MCFA are more efficiently absorbed then LCFA 

(23), and thus differences in energy dissipation by inefficient digestion of the dietary fatty 

acids is unlikely to underlie the differences in adiposity and body composition. Whole-body 

oxygen consumption (normalised to lean mass) was elevated in both fat-fed groups compared 

to controls, and was significantly higher in MCFA- vs. LCFA-fed animals in both the light 

and dark phase (Fig. 4 C). Furthermore, the respiratory exchange ratio (RER) showed a 

greater decrease in MCFA-mice than in LCFA-mice compared to control chow-fed mice 

(Fig. 4 D). The increase in overall energy expenditure and the lower RER could partly 

explain the reduced adiposity in MCFA-fed mice. Compared to LCFA-mice, MCFA-fed 

animals also did not develop the same degree of high-fat diet-induced glucose intolerance 

(Fig. 4 E) and displayed lower fasting insulin levels (Fig. 4 F).  

Effect of dietary MCFA and LCFA intake on muscle lipid accumulation 

MCFA-fed mice displayed less muscle triacylglycerol (TAG) accumulation than LCFA-fed 

mice (41% increase with MCFA vs. 295% increase with LCFA) (Fig. 5A). A similar 

proportional increase was also observed in diacylglycerol (DAG) accumulation, whereas total 

ceramide levels were greatest in muscle from MCFA-fed mice (Fig. 5B). The increase in 

muscle ceramide in MCFA-fed mice was mainly due to an increase in CER18:0 and CER24:0 

(Fig. 5C), while the increase in total DAG in MCFA- and LCFA-fed mice was due to an 

elevation in the same DAG species, mainly DAG16:0/16:0, DAG 16:0/18:0 and 

DAG16:1/18:1 (Supplemental Fig. 1). 

Effect of dietary MCFA and LCFA intake on mitochondrial respiration and ROS 

production 

To determine if MCFA altered mitochondrial function, oxygen consumption in states II, III 

and IV was measured in isolated muscle mitochondria using succinate and palmitoyl carnitine 

as substrates. Mitochondria from muscle of MCFA-mice showed significantly greater rates of 

oxygen consumption than chow- and LCFA-fed animals in state III for both succinate and 

palmitoyl carnitine (Fig. 5 A+B). Increased mitochondrial substrate flux is often 

accompanied by higher ROS production, however the mitochondria from MCFA-fed mice 

displayed a 32% decrease in H2O2 generation in the presence of succinate (when compared to 
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LCFA-mice), with no difference in ROS production detected when palmitoyl carnitine was 

used as a substrate for the electron transport chain (ETC) (Fig. 5 C).  

Using certain assumptions (see methods section), it is possible to calculate the percentage of 

electrons that leak out of sequence during electron transfer in the ETC, and, rather than being 

transferred to molecular oxygen as final electron acceptor, leak out and produce superoxide. 

This has been called the free radical leak (FRL) (16). With succinate (in the presence of 

rotenone), muscle mitochondria from MCFA-fed mice displayed a 40% decrease in FRL, 

with no change observed in the LCFA-animals in comparison to controls. In contrast, with 

palmitoyl carnitine the FRL was two-fold higher in LCFA-mice than in MCFA- or chow-fed 

mice (Fig. 5D). Both substrates point towards a MCFA-rich diet having beneficial effects on 

mitochondrial electron leakage, with less superoxide molecules produced per consumed 

oxygen molecule.  

Effect of dietary MCFA and LCFA intake on protein expression of mitochondrial oxidative 

proteins 

Immunoblotting of mitochondrial lysates was undertaken to investigate if the increased 

oxygen consumption in isolated mitochondria from MCFA-fed mice might be due to 

alterations in the expression of key oxidative proteins. Equal amounts of mitochondria from 

each dietary group were used for immunoblotting, as shown by quantification of the abundant 

mitochondrial transmembrane protein porin (Fig. 6). Protein expression of sub-units of 

complexes I-V of the ETC, as well as uncoupling protein 3 (UCP3), were increased to a 

greater extent with the MCFA- than the LCFA-diet, when compared to mitochondria from 

chow-fed controls (Fig. 6). Superoxide dismutase 2 (SOD) was significantly decreased in the 

MCFA-mice, whereas no difference was observed in carnitine palmitoyl transferase 1 (CPT1) 

protein content between diet groups. These data suggest that MCFA more effectively 

promote the expression of oxidative proteins than LCFA, resulting in increased oxidative 

capacity per unit of mitochondria.  

Effect of dietary MCFA and LCFA intake on oxidative stress in muscle 

As described above, in both muscle cells and mitochondria from mouse muscle, MCFA were 

associated with lower rates of ROS production. To determine if this was accompanied by 

differences in the accumulation of oxidative damage in mouse skeletal muscle (as done in 

C2C12 myotubes), we measured various antioxidant and oxidative damage markers. 
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Antioxidant systems are expected to respond to the need of a tissue for protection, with 

greater oxidative stress levels resulting in an increase in the expression and activity of 

antioxidant enzymes (24). Glutathione peroxidase, as well as the content of lipid 

hydroperoxides (an intermediate marker of oxidative damage to lipids) and protein carbonyls 

(marker for oxidative damage to proteins), were increased with the LCFA-, but not the 

MCFA-diet (Fig. 7 A-C). TBARS, an endpoint marker of lipid peroxidation, remained 

unchanged in muscle of LCFA-fed mice, but was significantly decreased in MCFA-mice, 

when compared to controls (Fig. 7 D). Overall, these data indicate that MCFA in contrast to 

LCFA do not increase mitochondrial ROS production in vivo, with subsequently less 

accumulation of oxidatively damaged lipids and proteins.   
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Discussion 

Over the last 20 years, it has been repeatedly described that diets rich in LCFA (e.g. typical 

western diets) lead to the development of adiposity and insulin resistance, and increase the 

risk of diabetes (1, 25). In contrast, diets rich in MCFA, when used at an equal-caloric level, 

do not induce the same degree of detrimental effects on metabolic health; despite a similar 

increase in dietary fat intake as with the LCFA diet (4-8). These favourable effects have been 

partially ascribed to the physical properties of MCFA, because this class of FA is more 

readily funnelled into oxidative pathways, which could lead to increased energy expenditure 

and less fat deposition in adipose and other tissues compared to LCFA (26). The tissue that is 

likely to be responsible for many of the beneficial effects of MCFA on whole-body glucose 

homeostasis is skeletal muscle, where previous studies from our group have shown that a 

MCFA-rich diet leads to a substantially greater increase in markers of mitochondrial content 

than LCFA, and a prevention of lipid accumulation and insulin resistance in this tissue (8). In 

the current study, we have shown that the beneficial effects of MCFA in skeletal muscle may 

also be related to changes at the level of mitochondria, where we observed increased 

respiratory capacity and reduced ROS production. 

Whereas a variety of studies demonstrated a link between muscle mitochondrial oxidative 

capacity and insulin action (8, 27, 28), other publications showed no such correlation 

(summarized in 29). Here we show that MCFA induced an increase in respiration and SDH 

activity in muscle cells, as well as an increased protein expression of various mitochondrial 

proteins, suggesting an improvement in mitochondrial oxidative capacity, while no such 

increases were observed after LCFA treatment. Importantly, experiments in isolated 

mitochondria from skeletal muscle of MCFA-fed mice showed that per unit of mitochondria 

there was increased respiratory capacity, which is likely explained by an increase in the 

expression of oxidative proteins. Previous studies have shown that changes in the expression 

and activity of oxidative proteins and the capacity for substrate oxidation can occur in muscle 

without marked changes in total mitochondrial number, indicating improved intrinsic 

capacity per mitochondrion (28, 30). The findings of the current study and our previous 

report (8) indicate that MCFA improve mitochondrial substrate oxidation in muscle to a 

greater extent than LCFA, due to increases in both the total number of mitochondria and the 

oxidative capacity of individual mitochondria.  
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Collectively the changes in mitochondrial content and capacity could, in part, explain the 

enhanced whole-body energy expenditure per unit lean mass, the prevention of TAG and 

DAG accumulation in muscle and the better insulin action in MCFA- vs. LCFA-fed animals 

(current study and 8). We did observe a slight increase in total ceramide content in muscle 

from the MCFA-fed mice, and despite ceramide accumulation being previously associated 

with the development of insulin resistance, recent studies suggest that the FA chain length of 

the ceramide species is important in determining its metabolic impact (31, 32). The increase 

in muscle ceramide in MCFA-fed mice was mainly due to an increase in CER18:0 and 

CER24:0 (Fig. 5C), with CER24:0 having previously been reported to have beneficial anti-

apoptotic effects (31). Importantly, we have shown that the effects of MCFA to boost 

mitochondrial metabolism and avoid excess lipid deposition and insulin resistance are not 

uniform across tissues. In our previous work we demonstrated that dietary MCFA, while 

improving metabolic parameters in muscle, led to steatosis in the liver, likely due to 

upregulation of lipogenic pathways, and hepatic insulin resistance (8). In the current cohort of 

animals, we similarly observed that hepatic lipid accumulation was increased after LCFA-

feeding, and to an even greater extent after MCFA-feeding (data not shown). While excess 

hepatic lipid can have deleterious metabolic effects, it should be noted that many studies in 

rodents and humans have reported no adverse effects of MCFAs on liver lipid levels (4, 26, 

33, 34). These disparate findings on liver lipid accumulation between studies indicates that 

differences in methodological factors may also be important, such as the exact composition 

and fat content of the MCFA enriched diets, as well as the composition of the other 

macronutrients in the diet.  

Another intriguing finding of the current investigation was the disparate effects of MCFA and 

LCFA on mitochondrial ROS production in muscle. Mitochondria are known to leak 

electrons during electron transfer along the respiratory chain. This electron leak leads to the 

generation of superoxide anions (an oxygen molecule with an unpaired electron), and 

subsequently to the production of hydrogen peroxide (H2O2), both reactive oxygen species 

being highly damaging to any molecule they encounter (35). ROS generation is dependent 

upon the redox state of the mitochondria, substrate concentration and substrate type. 

Compared with carbohydrates, reducing equivalents from lipid oxidation produce increased 

superoxide (36, 37). While still controversial, the majority of recent studies have proposed 

that mitochondrial ROS generation is an important early event in the induction of insulin 

resistance, with LCFA increasing ROS production and promoting insulin resistance (9, 10, 
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38-40). Other publications support the view that cytosolic ROS, at low levels, are important 

for normal insulin signalling and do not induce insulin resistance (41, 42). In conjunction 

with both views, diets rich in LCFA have also been reported to decrease antioxidant 

protection, thereby promoting oxidative damage (40, 43), whereas other reports demonstrated 

that antioxidants do not improve insulin action, especially in insulin-resistant humans 

(summarized in 44). Little is known about the effects of MCFA on ROS generation and the 

accumulation of oxidative damage. Here we have shown that in response to MCFA, both 

mitochondrial superoxide generation in C2C12 myotubes, as well as mitochondrial H2O2 

production in mouse skeletal muscle, was similar or decreased compared to controls. This 

pattern can be explained by low levels of free radical leakage from the ETC in muscle 

mitochondria from MCFA-fed mice, as measured by percentage of electrons leaking out of 

sequence during mitochondrial respiration. In contrast, mitochondrial superoxide production 

was substantially increased in LCFA-treated cells and in skeletal muscle of mice fed a LCFA-

rich diet there was a 2-fold increase in FRL with the lipid-based substrate palmitoyl carnitine. 

Cytosolic superoxide production, measured in the C2C12 myotubes, was significantly 

reduced in response to both MCFA and LCFA treatments, indicating that mitochondrial ROS 

generation is likely to be a more important mediator of changes in cellular oxidative status, as 

recently suggested (45, 46).  

In healthy systems, ROS are detoxified by various antioxidant systems. However, in diseased 

states and during long-term dietary LCFA intake, this ‘oxidant–antioxidant’ balance has been 

shown to be tilted in favour of the reactive species, resulting in ROS-mediated damage to 

lipids, proteins and DNA (47). To assess how the different FA affected the oxidative status of 

muscle, we measured lipid hydroperoxides and TBARS as markers of lipid peroxidation, 

protein carbonylation as a marker of oxidative damage to proteins and the antioxidant 

enzymes GPx (activity) and SOD2 (protein content). Consistent with previous studies (48, 

49), these oxidative markers were increased in muscle of mice fed the LCFA-rich diet (with 

the exception of SOD2), as well as in C2C12 myotubes after overnight treatment with various 

LCFA. However, MCFA-treated mice and cells displayed no evidence of oxidative stress, 

with oxidative damage markers and antioxidant protection remaining similar to controls 

(GPx, LOOH, protein carbonyls) or being even decreased (TBARS, SOD2). These results 

highlight that MCFA do not promote oxidative stress in muscle and this may be an additional 

mechanism explaining why high-fat diets containing MCFA do not cause the same 

deterioration in glucose homeostasis and insulin action as LCFA (5). Furthermore, as 
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antioxidant systems are expected to respond to the need of tissues for protection (24), the 

decrease in SOD2 protein content (and similar GPx activity) further supports the low 

oxidative stress levels observed with the MCFA diet.  

Changes of UCP3 expression are not only used as a marker of mitochondrial oxidative 

metabolism (50), but also as an oxidative stress marker (51). Negre-Salvayre and colleagues 

were first to suggest a role for UCPs in regulating mitochondrial ROS production (52). 

Nowadays, several transgenic model systems suggest that UCP3 is able to curtail superoxide 

production by acting as a mild mitochondrial uncoupler (53, 54). MCFA-mice displayed an 

88% increase in UCP3 content in skeletal muscle, whereas UCP3 only showed a tendency 

towards an increase with the LCFA-diet (+40%). The elevated UCP3 content in MCFA-fed 

mice might also partly explain their decreased H2O2 generation and electron leakage, as well 

as their increased oxygen consumption. 

MCFA have been reported to improve insulin action and glucose homeostasis in various 

experimental models. Type 2 diabetic subjects treated acutely with MCFA for 5 days showed 

an improvement in insulin-stimulated glucose disposal (55). Similarly, Han and colleagues 

showed a decrease in body weight, HOMA-IR and fasting insulin in type 2 diabetic subjects 

that consumed diets supplemented with MCFA for 3 months when compared to subjects 

consuming LCFA-rich diets (56). Comparable beneficial effects have also been reported in 

various rodent models (4, 5, 8, 57) and in muscle cells (58). To test if some of the beneficial 

effects of MCFA on insulin action might be related to changes in insulin signalling, we 

determined the phosphorylation status of the key insulin signalling intermediates IRS1, Akt 

and GSK3β in muscle cells. Compared to control cells, insulin-induced Akt phosphorylation 

was significantly increased after MCFA treatment, but was unchanged or even decreased (in 

the case of palmitic acid) after LCFA treatment. Similarly, phosphorylation of GSK3β was 

unchanged in MCFA-treated cells but decreased after LCFA-treatment. Changes in GSK3β 

phosphorylation were accompanied by a similar pattern in the rate of insulin-stimulated 

glycogen synthesis, which was significantly reduced in the LCFA-treated cells. Thus, 

although there is still controversy regarding the exact relationship between alterations in the 

activation state of insulin signalling intermediates and endpoint measures of insulin action 

(e.g. glucose uptake) (59, 60), our results indicate that MCFA display enhancing effects on 

both the insulin signalling intermediates, as well as on glycogen synthesis, which is 

commonly used as an endpoint measure of insulin action in cell culture systems (61, 62).  
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In conclusion, our study has revealed that MCFA increase oxidative metabolism at the level 

of the mitochondrion in muscle. Furthermore, in contrast to LCFA, MCFA prevent the 

induction of oxidative stress that normally arises due to excess lipid intake. Our results in 

myotubes indicate that capric and lauric acid (C10:0 and C12:0) are most likely responsible 

for the observed effects, with these two FA comprising more than 40% of the total FA 

content in our MCFA-diet (8). Overall these findings provide new insight into the 

mechanisms that contribute to the favourable effects of MCFA on energy homeostasis and 

insulin action.   
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Figure Legends 

Figure 1. Metabolic activity of C2C12 myotubes. Oxygen consumption (A), succinate 

dehydrogenase activity (B), immunoblotting for oxidative proteins (C), triacylglycerol levels 

(D) and fatty acid uptake (E) were measured in muscle cells treated with various MCFA or 

LCFA (18 hour incubations with 200µM FA). Fatty acid uptake was measured after 18hr-

treatment with the respective fatty acids, followed by a 1 hour-incubation with either 14C-

lauric acid (for C and MCFA treated cells) or 14C-palmitic acid (for C and LCFA treated 

cells), and was calculated as the sum of FA that were funnelled into oxidative and storage 

pathways (see methods for details). Shown are means ± SEM, n=3 with 3 replicates each (or 

2 replicates in the case of panel A); * p<0.05, ** p<0.001 vs. C; # p<0.01 vs. CA, ^ p<0.01 

vs. LA. C = control, CA = capric acid, LA = lauric acid, PA = palmitic acid, OA = oleic acid, 

LinA = linoleic acid 

Figure 2. Oxidative stress markers in C2C12 myotubes. Mitochondrial (A) and cytosolic (B) 

superoxide generation, lipid hydroperoxide (B) and TBARS (C) levels in muscle cells treated 

with various MCFA and LCFA (18 hour incubations with 200µM FA). Shown are means ± 

SEM, n=3 with 3 replicates each (or n=4 with 2 replicates each in the case of panel B); * 

p<0.05, ** p<0.01 and *** p<0.001 vs. C; # p<0.01 vs. CA, ^ p<0.01 vs. LA, ɛ p<0.05 vs. 

PA, ϕ p<0.01 vs. OA. C = control, CA = capric acid, LA = lauric acid, PA = palmitic acid, 

OA = oleic acid, LinA = linoleic acid 

Figure 3. Insulin signalling and glycogen synthesis in C2C12 myotubes. (A) Immunoblotting 

results in basal and insulin-stimulated muscle cells after 18 hours incubation with various 

MCFA and LCFA, and 30min stimulation with 10nM insulin. Representative blots show n=2 

per group, but graphed changes represent n=4-6 (2-3 independent experiments). (B) 

Glycogen synthesis rate of FA-treated cells in the absence or presence of 100nM Insulin, 

measured using 14C-labelled glucose. Bar graphs show means ± SEM. Statistical analysis was 

measured by 1-way ANOVA using the ratios between basal and insulin-stimulated protein 

levels in each treatment group with * p<0.05, * p<0.01 and *** p<0.001 vs. C cells. C = 

control, CA = capric acid, LA = lauric acid, PA = palmitic acid, OA = oleic acid, LinA = 

linoleic acid, p = phospho, t = total 

Figure 4. Metabolic markers in mice fed CHOW-, MCFA- and LCFA-rich diets. Body 

weight (A), fat pad weight (B), oxygen consumption (C), respiratory exchange ratio (D), 
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blood glucose levels during a glucose tolerance test (GTT) (E) and fasting plasma insulin 

levels (F). For the GTT, glucose (2 g/kg) was injected at the 0 time point, and blood glucose 

levels were monitored for 90 after injection. Shown are means ± SEM, n=6-8 per diet group; 

* p<0.05, ** p<0.01 and *** p<0.001. Significance values in panel E represent differences in 

the area-under-the-curve during the GTT. 

Figure 5. Muscle lipid accumulation in mice fed CHOW-, MCFA- and LCFA-rich diets. 

Total triacylglyceride (A), ceramide and diacylglyceride levels (B) and ceramide species (C) 

in quadriceps muscle. Shown are means ± SEM, n=6-8 per diet group; * p<0.05, ** p<0.01 

and *** p<0.001. C = Chow, M = MCFA and L = LCFA 

Figure 6. Mitochondrial respiration and hydrogen peroxide production in muscle from 

CHOW-, MCFA- and LCFA-fed mice. Mitochondrial oxygen consumption was measured in 

state 2, state 3 and state 4 using succinate (A) or palmitoyl carnitine (B) as a substrate. 

Hydrogen peroxide production was measured in the presence of succinate, succinate plus 

rotenone and palmitoyl carnitine (C). H2O2 production and state 2 oxygen consumption were 

used to calculate the percentage of electrons which leak out of sequence producing 

superoxide and subsequently hydrogen peroxide, the free radical leak (D). Shown are means 

± SEM; n=6-8 for diet group; * p<0.05, ** p<0.01 and *** p<0.001. 

Figure 7. Markers of mitochondrial metabolism in skeletal muscle mitochondria. 

Representative immunoblotting results of oxidative markers in mice fed CHOW-, MCFA- or 

LCFA-rich diets. Shown are n=4 for each group, but percentage changes represent n=6-8; * 

p<0.05, ** p<0.01 and *** p<0.001. Complex I–V represent subunits of the complexes of the 

ETC. Porin was used as mitochondrial loading control and shows similar distribution in all 

diet groups. 

Figure 8. Oxidative stress markers in muscle from CHOW-, MCFA- and LCFA-fed mice. 

Glutathione peroxidase activity (A), protein carbonylation (B), lipid hydroperoxide (C) and 

TBARS levels (D). Shown are means ± SEM; n=6-8 for diet group; * p<0.05, ** p<0.01 and 

*** p<0.001 
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