4,784 research outputs found

    Dancing on the edge of disciplines: law and the interdisciplinary turn

    Get PDF
    This piece looks critically at the issue of interdisciplinarity and multidisciplinarity within legal study and research. It examines and analyses trends within legal education, before looking at a number of disciplinary approaches within sport. It then considers the interface between law and sport, and argues in particular, and following Bourdieu, that sport is a rare field that allows a number of approaches to be taken, whilst privileging none of them. It argues that rather than seeing law as the focal point of inquiry, sport becomes the focus and that by fostering an approach that allows various disciplinary approaches to be adopted and challenged, sport allows true interdisciplinarity to take place

    Reconceptualising the standard of care in sport: The case of youth rugby in England and South Africa

    Get PDF
    Sport is an important area of civil society in both South Africa and England, and this article is broadly concerned with the relationship between sport and personal injury. More specifically, the article compares how rugby is regulated by the tort of negligence in England and delict in South Africa respectively. Regarding liability, for sport there are very specific factors that need to be taken into account. The article is concerned with, firstly, the broader context of sport as an important social and cultural activity, and secondly the specific sporting context that includes the rules of the game as well as the playing culture, with a focus on rugby at junior level. Through a critical and comparative analysis of how the standards of care in sport have been developed in both jurisdictions, the aim of this article is to consider how sport specific elements can be incorporated into the traditional legal principles. This comparative analysis contextualises the various discussions in the light of the differences between the English tort of negligence and the South African law of delict. Our argument is that the context and specificity of rugby should be more explicitly taken into account when evaluating potential liability. To establish a standard of care for sport is complex, with many factors to be taken into account and balanced against one another. The law of negligence/delict therefore needs to be adaptable and flexible to resolve new situations where injuries have occurred. Even in established situations where liability has been previously determined, novel events do occur and knowledge develops that requires a reconsideration of the principles that govern liability. In junior rugby, the risk of very serious injuries is relatively small and the law needs to tread a cautious path through liability, ensuring it is a vehicle that promotes sport rather than creating barriers to its enjoyment and practice. A greater understanding of sport, informed by detailed research, can unearth new areas of potential liability that will need to be considered in the future

    Recent physical conditions and health service utilization in people with common mental disorders and severe mental illness in England: Comparative cross-sectional data from a nationally representative sample

    Get PDF
    BACKGROUND.: Policies addressing the physical health of people with mental disorders have historically focused on those with severe mental illness (SMI), giving less prominence to the more prevalent common mental disorders (CMDs). Little is known about the comparative physical health outcomes of these patient groups. We aimed to first compare the: (a) number of past-year chronic physical conditions and (b) recent physical health service utilization between CMDs vs. SMI, and secondly compare these outcomes between people with CMDs vs. people without mental disorders. METHODS.: We analyzed cross-sectional data from the third Adult Psychiatric Morbidity Survey, a representative sample of the English population. We determined the presence of physical conditions and health service utilization by self-report and performed logistic regression models to examine associations of these outcomes between participant groups. RESULTS.: Past-year physical conditions were reported by the majority of participants (CMDs, n = 815, 62.1%; SMI = 27, 63.1%) with no variation in the adjusted odds of at least one physical condition between diagnoses (odds ratio [OR] = 0.96, 95% confidence intervals [CI] 0.42-1.98, p = 0.784). People with CMDs were significantly more likely to be recently hospitalized relative to with those with SMI (OR = 6.33, 95% CI 5.50-9.01, p < 0.05). Having a CMD was associated with significantly higher odds of past-year physical conditions and recent health service utilization (all p < 0.001) compared with the general population. CONCLUSIONS.: People with CMDs experience excess physical health morbidities in a similar pattern to those found among people with SMI, while their somatic hospitalization rates are even more elevated. Findings highlight the importance of recalibrating existing public health strategies to bring equity to the physical health needs of this patient group

    Response of an atomic Bose-Einstein condensate to a rotating elliptical trap

    Full text link
    We investigate numerically the response of an atomic Bose-Einstein condensate to a weakly-elliptical rotating trap over a large range of rotation frequencies. We analyse the quadrupolar shape oscillation excited by rotation, and discriminate between its stable and unstable regimes. In the latter case, where a vortex lattice forms, we compare with experimental observations and find good agreement. By examining the role of thermal atoms in the process, we infer that the process is temperature-independent, and show how terminating the rotation gives control over the number of vortices in the lattice. We also study the case of critical rotation at the trap frequency, and observe large centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure

    Stochastic field theory for a Dirac particle propagating in gauge field disorder

    Get PDF
    Recent theoretical and numerical developments show analogies between quantum chromodynamics (QCD) and disordered systems in condensed matter physics. We study the spectral fluctuations of a Dirac particle propagating in a finite four dimensional box in the presence of gauge fields. We construct a model which combines Efetov's approach to disordered systems with the principles of chiral symmetry and QCD. To this end, the gauge fields are replaced with a stochastic white noise potential, the gauge field disorder. Effective supersymmetric non-linear sigma-models are obtained. Spontaneous breaking of supersymmetry is found. We rigorously derive the equivalent of the Thouless energy in QCD. Connections to other low-energy effective theories, in particular the Nambu-Jona-Lasinio model and chiral perturbation theory, are found.Comment: 4 pages, 1 figur

    Modeling the functional genomics of autism using human neurons.

    Get PDF
    Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD

    The QCD sign problem and dynamical simulations of random matrices

    Full text link
    At nonzero quark chemical potential dynamical lattice simulations of QCD are hindered by the sign problem caused by the complex fermion determinant. The severity of the sign problem can be assessed by the average phase of the fermion determinant. In an earlier paper we derived a formula for the microscopic limit of the average phase for general topology using chiral random matrix theory. In the current paper we present an alternative derivation of the same quantity, leading to a simpler expression which is also calculable for finite-sized matrices, away from the microscopic limit. We explicitly prove the equivalence of the old and new results in the microscopic limit. The results for finite-sized matrices illustrate the convergence towards the microscopic limit. We compare the analytical results with dynamical random matrix simulations, where various reweighting methods are used to circumvent the sign problem. We discuss the pros and cons of these reweighting methods.Comment: 34 pages, 3 figures, references added, as published in JHE

    Chiral Condensate at Nonzero Chemical Potential in the Microscopic Limit of QCD

    Full text link
    The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellations which make this possible also occur on the microscopic scale, where they can be investigated by means of a random matrix model. We show that they can be understood in terms of orthogonality properties of orthogonal polynomials. In the strong non-Hermiticity limit they are related to integrability properties of the spectral density. As a by-product we find exact analytical expressions for the partially quenched chiral condensate in the microscopic domain at nonzero chemical potential.Comment: 29 pages, 5 figures, version to appear in PR

    A new Chiral Two-Matrix Theory for Dirac Spectra with Imaginary Chemical Potential

    Full text link
    We solve a new chiral Random Two-Matrix Theory by means of biorthogonal polynomials for any matrix size NN. By deriving the relevant kernels we find explicit formulas for all (n,k)(n,k)-point spectral (mixed or unmixed) correlation functions. In the microscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results to the ordinary (non-chiral) ensembles, and also there provide explicit solutions for any finite size NN, and in the microscopic scaling limit. Our results give the general analytical expressions for the microscopic correlation functions of the Dirac operator eigenvalues in theories with imaginary baryon and isospin chemical potential, and can be used to extract the tree-level pion decay constant from lattice gauge theory configurations. We find exact agreement with previous computations based on the low-energy effective field theory in the two special cases where comparisons are possible.Comment: 31 pages 2 figures, v2 missing term in partially quenched results inserted, fig 2 update

    A new chiral two-matrix theory for dirac spectra with imaginary chemical potential

    Get PDF
    We solve a new chiral Random Two-Matrix Theory by means of biorthogonal polynomials for any matrix size NN. By deriving the relevant kernels we find explicit formulas for all (n,k)(n,k)-point spectral (mixed or unmixed) correlation functions. In the microscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results to the ordinary (non-chiral) ensembles, and also there provide explicit solutions for any finite size NN, and in the microscopic scaling limit. Our results give the general analytical expressions for the microscopic correlation functions of the Dirac operator eigenvalues in theories with imaginary baryon and isospin chemical potential, and can be used to extract the tree-level pion decay constant from lattice gauge theory configurations. We find exact agreement with previous computations based on the low-energy effective field theory in the two special cases where comparisons are possible
    • …
    corecore