10,830 research outputs found

    Soil and Drainage

    Get PDF
    PDF pages: 1

    Habitable Zone Lifetime of Exoplanets around Main Sequence Stars

    Get PDF
    Funding: Dean's Scholarship at the University of East Anglia.The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star’s main sequence lifetime. We describe the time that a planet spends within the HZ as its ‘‘habitable zone lifetime.’’ The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the ‘‘classic’’ HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a ‘‘hybrid’’ HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79 · 109 years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets’ HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.Publisher PDFPeer reviewe

    Frequency-Tunable Josephson Junction Resonator for Quantum Computing

    Full text link
    We have fabricated and measured a high-Q Josephson junction resonator with a tunable resonance frequency. A dc magnetic flux allows the resonance frequency to be changed by over 10 %. Weak coupling to the environment allows a quality factor of ∼\thicksim7000 when on average less than one photon is stored in the resonator. At large photon numbers, the nonlinearity of the Josephson junction creates two stable oscillation states. This resonator can be used as a tool for investigating the quality of Josephson junctions in qubits below the single photon limit, and can be used as a microwave qubit readout at high photon numbers.Comment: 3 pages, 5 figure
    • …
    corecore