5,054 research outputs found

    Wetting on Lines and Lattices of Cylinders

    Full text link
    This paper discusses wetting and capillary condensation transitions on a line and a rectangular array of cylinders using an interface potential formalism. For a line of cylinders, there is a capillary condensation transition followed by complete wetting if the cylinders are sufficiently close together. Both transitions disappear as the cylinder separation is increased. The dependence of the wetting phase diagram of a rectangular array of cylinders is discussed as a function of the chemical potential, substrate--fluid interaction strength and surface tension.Comment: 17 pages in total: 11 pages of Latex document and 6 pages of figures, Latex Version 2.09, OUTP-93-40

    Effect of casing treatment of overall performance of axial-flow transonic fan stage with pressure ratio of 1.75 and tip solidity of 1.5

    Get PDF
    The effect of a number of casing treatments on the overall performance of a 1.75-pressure-ratio, 423-m/sec-tip-speed fan stage was evaluated. The skewed slot configuration with short-open slots over the midportion of the rotor had a stall margin of 23.5 percent, while the solid casing had a stall margin of 15.0 percent. The skewed slot configuration with long open slots extending ahead of and over portion of rotor displaced the stall line to the lowest flow at all speeds tested. At design speed, the peak efficiency for the long, forward open slots was 1 point less than that for the short midopen slots and 3 points less than that for the solid casing

    Effects of tip clearance on overall performance of transonic fan stage with and without casing treatment

    Get PDF
    The overall performance of a transonic fan stage is presented for various tip clearances, with and without casing treatment. The stage was tested with a solid casing, and with open skewed slots and closed skewed slots in the casing over the rotor blade tips. Four nominal nonrotating rotor blade tip clearances from 0.061 to 0.178 centimeter were used. For all three casings, the pressure ratio and efficiency decreased with increasing tip clearance. The stall margin for a given casing also decreased with increasing clearance. At design speed and a given tip clearance, the highest stall margin was obtained with the open-slot casing, and the lowest stall margin was obtained with the solid casing

    Performance of a 1.15-pressure-ratio axial-flow fan stage with a blade tip solidity of 0.5

    Get PDF
    The overall and blade-element performance of a low-solidity, low-pressure-ratio, low-tip-speed fan stage is presented over the stable operating range at rotative speeds from 90 to 120 percent of design speed. At design speed a stage peak efficiency of 0.836 was obtained at a weight flow of 30.27 kilograms per second and a pressure ratio of 1.111. The pressure ratio was less than design pressure ratio, and the design energy input into the rotor was not achieved. A mismatch of the rotor and stator blade elements resulted due to the lower than design pressure ratio of the rotor

    Performance of a transonic fan stage designed for a low meridional velocity ratio

    Get PDF
    The aerodynamic performance and design parameters of a transonic fan stage are presented. The fan stage was designed for a meridional velocity ratio of 0.8 across the tip of the stage, a pressure ratio of 1.57, a flow of 29.5 kilograms per second, and a tip speed of 426 meters per second. Radial surveys were obtained over the stable operating range from 50 to 100 percent of design speed. The measured, peak efficiency (0.81) of the stage occurred at a pressure ratio of 1.58 and a flow of 28.7 kilograms per second

    SAM 2 data user's guide

    Get PDF
    This document is intended to serve as a guide to the use of the data products from the Stratospheric Aerosol Measurement (SAM) 2 experiment for scientific investigations of polar stratospheric aerosols. Included is a detailed description of the Beta and Aerosol Number Density Archive Tape (BANAT), which is the SAM 2 data product containing the aerosol extinction data available for these investigations. Also included are brief descriptions of the instrument operation, data collection, processing and validation, and some of the scientific analyses conducted to date

    Performance of a single-stage transonic compressor with a blade-tip solidity of 1.5 and comparison with 1.3 and 1.7 solidity stages

    Get PDF
    The overall and blade-element performance of a transonic compressor stage with a tip solidity of 1.5 is presented over the stable operating range at rotative speeds from 50 to 100 percent of design speed. State peak efficiency of 0.82 was obtained at a weight flow of 29.4 kg.sec (200.4 (kg/sec)/m2 of annulus area) and a pressure ratio of 1.71. Stall margin at design speed was 14 percent. A comparison of three stages in a solidity study showed that the performance of the 1.5 solidity stage and the 1.3 solidity stage were nearly identical but that the performance of the 1.7 solidity stage was significantly lower

    Aerodynamic performance of a 1.35-pressure-ratio axial-flow fan stage

    Get PDF
    The overall blade element performances and the aerodynamic design parameters are presented for a 1.35-pressure-ratio fan stage. The fan stage was designed for a weight flow of 32.7 kilograms per second and a tip speed of 302.8 meters per second. At design speed the stage peak efficiency of 0.879 occurred at a pressure ratio of 1.329 and design flow. Stage stall margin was approximately 14 percent. At design flow rotor efficiency was 0.94 and the pressure ratio was 1.360

    A Virtual Reality Environment for Synthesizing Spherical Four-bar Mechanisms

    Get PDF
    This paper describes the development of a virtual reality environment which facilitates the design of spherical four-bar mechanisms. A short discussion of spherical mechanism design theory and computer-aided mechanism design is followed by a description of the virtual environment and the development and operation of the SphereVR program. The virtual environment allows the user to naturally interact with the input data and specify the design parameters while operating in a three-dimensional environment. We see this development as a logical extension of existing graphics-based spatial design software. The need for a three-dimensional design space is driven by the difficulty in specifying design inputs and constraints for a spatial problem using a two-dimensional interface. In addition, once the mechanism has been created, the virtual environment provides the opportunity for the user to visually verify that the mechanism will perform the desired three-dimensional motion

    Dirac eigenvalues and eigenvectors at finite temperature

    Full text link
    We investigate the eigenvalues and eigenvectors of the staggered Dirac operator in the vicinity of the chiral phase transition of quenched SU(3) lattice gauge theory. We consider both the global features of the spectrum and the local correlations. In the chirally symmetric phase, the local correlations in the bulk of the spectrum are still described by random matrix theory, and we investigate the dependence of the bulk Thouless energy on the simulation parameters. At and above the critical point, the properties of the low-lying Dirac eigenvalues depend on the Z3Z_3-phase of the Polyakov loop. In the real phase, they are no longer described by chiral random matrix theory. We also investigate the localization properties of the Dirac eigenvectors in the different Z3Z_3-phases.Comment: Lattice 2000 (Finite Temperature), 5 page
    • …
    corecore