387 research outputs found

    ECONOMIC EFFECTS OF AN EXHAUSTIBLE IRRIGATION WATER SUPPLY: TEXAS HIGH PLAINS

    Get PDF
    Resource /Energy Economics and Policy,

    ECONOMIC IMPACT OF BRUSH ENCROACHMENT IN TEXAS

    Get PDF
    Resource /Energy Economics and Policy,

    Input-output Analysis - Texas High Plains Labor Employment Potentials to 1980

    Get PDF
    The regional economy of the Texas High Plains (56 counties) is confronted with limited and exhaustable supplies of natural resources. This study was conducted to provide estimates of the direct labor requirements per 10,000ofproduction,toestimatedollarvalueoffinishedgoodsandservicesin1980requiredofeachsector,andtoestimate,inspecificinstance,theeffectsofirrigationwaterresourceshortagesuponlaboremploymentopportunities.Direct,indirectandinducedemploymenteffectswerederivedthroughuseofaLeontiefInputOutputmodel.Theanalysesshowedthatfinaldemandcouldincreasefrom10,000 of production, to estimate dollar value of finished goods and services in 1980 required of each sector, and to estimate, in specific instance, the effects of irrigation water resource shortages upon labor employment opportunities. Direct, indirect and induced employment effects were derived through use of a Leontief Input-Output model. The analyses showed that final demand could increase from 5.5 billion in 1967 to $8.7 billion in 1980. In order to meet this level of production, labor employment in the region could increase from the 1967 level of 254 thousand to an estimated 406 thousand in 1980

    First On-Sky Demonstration of a Scintillation Correction technique using Tomographic Wavefront Sensing

    Get PDF
    Scintillation noise significantly limits high precision ground-based photometry of bright stars. In this paper we present the first ever on-sky demonstration of scintillation correction. The technique uses tomographic wavefront sensing to estimate the spatial-temporal intensity fluctuations induced by high altitude optical turbulence. With an estimate of the altitudes and relative strengths of the turbulent layers above the telescope, the wavefront sensor data from multiple guide stars can be combined to estimate the phase aberrations of the wavefront at each altitude through the use of a tomographic algorithm. This 3D model of the phase aberrations can then be used to estimate the intensity fluctuations across the telescope pupil via Fresnel propagation. The measured photometric data for a given target within the field of view can then be corrected for the effects of scintillation using this estimate in post-processing. A simple proof-of-concept experiment using a wavefront sensor and a stereo-SCIDAR turbulence profiler attached to the 2.5m Isaac Newton Telescope was performed for a range of exposure times using the Orion Trapezium cluster as the reference stars. The results from this on-sky demonstration as well as simulations estimating the expected performance for a full tomographic AO system with laser guide stars are presented. On-sky the scintillation index was reduced on average by a factor of 1.9, with a peak of 3.4. For a full tomographic system we expect to achieve a maximum reduction in the scintillation index by a factor of ∼25

    Optical sparse telescope arrays and scintillation noise

    Get PDF
    Fresnel propagation of starlight after it passes through high altitude turbulence in the Earth’s atmosphere results in random fluctuations of the intensity at ground level, known as scintillation. This effect adds random noise to photometric measurements with ground-based optical telescopes. Spatial correlation of the intensity fluctuations means that the fractional photometric noise due to scintillation may be substantially smaller for a sparse array of small aperture telescopes than for a single large aperture of the same total area. Assuming that the photometric noise for each telescope is independent, averaging the light curves measured by N telescopes reduces the noise by a factor of N−−√⁠. For example, for bright stars, the signal-to-noise ratio of a 2.54 m telescope can be achieved for an array of thirty 20 cm telescopes if the scintillation noise measured for each telescope is uncorrelated. In this paper, we present results from simulation and from observations at the Isaac Newton Telescope. These explore the impact that several parameters have on the measured correlation of the scintillation noise between neighbouring telescopes. We show that there is significant correlation between neighbouring telescopes with separations parallel to the wind direction of the dominant high altitude turbulent layer. We find that the telescopes in an array should be separated by at least twice their aperture diameter so that there is negligible correlation of the photometric noise. We discuss additional benefits of using sparse telescope arrays, including reduced cost and increased field of view

    A multi-mRNA host-response molecular blood test for the diagnosis and prognosis of acute infections and sepsis: Proceedings from a clinical advisory panel

    Get PDF
    Current diagnostics are insufficient for diagnosis and prognosis of acute infections and sepsis. Clinical decisions including prescription and timing of antibiotics, ordering of additional diagnostics and level-of-care decisions rely on understanding etiology and implications of a clinical presentation. Host mRNA signatures can differentiate infectious from noninfectious etiologies, bacterial from viral infections, and predict 30-day mortality. The 29-host-mRNA blood-based InSe

    Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes

    Get PDF
    In 1996 three cruises were conducted to simultaneously quantify the fine-scale optical and physical structure of the water column. Data from 120 profiles were used to investigate the temporal occurrence and spatial distribution of thin layers of phytoplankton as they relate to variations in physical processes. Thin layers ranged in thickness from a few centimeters to a few meters. They may extend horizontally for kilometers and persist for days. Thin layers are a recurring feature in the marine environment; they were observed and measured in 54% of our profiles. Physical processes are important in the temporal and spatial distribution of thin layers. Thin layer depth was closely associated with depth and strength of the pycnocline. Over 71% of all thin layers were located at the base of, or within, the pycnocline. The strong statistical relationships between thin layers and physical structure indicate that we cannot understand thin layer dynamics without understanding both local circulation patterns and regional physical forcing
    corecore