14 research outputs found

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    Characterization of the fine specificity of bovine CD8 T-cell responses to defined antigens from the protozoan parasite Theileria parva

    Get PDF
    Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes

    Immunity to East Coast fever in cattle induced by a polypeptide fragment of the major surface coat protein of Theileria parva sporozoites

    No full text
    Full-length recombinant versions of p67, the 709 amino acid major surface protein of Theileria parva sporozoites, induce immunity to East Coast fever (ECF) in cattle. We show that a soluble Escherichia coli recombinant version of p67 (p67635), in which a prokaryotic signal peptide replaces the eukaryotic one, confers protection comparable to that induced by the full-length molecule, but is unstable. Peptides encoding 80 (p67C) and 205 (p67N) amino acid fragments of p67, containing epitopes recognised by sporozoite neutralising monoclonal antibodies, exhibit improved stability in E. coli. Antibodies raised against the central region of p67 (p67M) neutralise sporozoite infectivity in vitro. The p67C peptide induced immunity against ECF in cattle, at a level equivalent to p67635, suggesting that a synthetic peptide vaccine might be achievable

    A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle

    No full text
    Protein components of the cement cone of ixodid ticks are candidates for inclusion in vaccines against tick infestation, since they are essential for tick attachment and feeding. We describe here the cloning of a cDNA encoding a 36 kDa protein, designated Rhipicephalus Immuno-dominant Molecule 36 (RIM36), present in salivary glands and the cement cone material secreted by Rhipicephalus appendiculatus. The 334-amino-acid sequence of RIM36 has a high content of glycine, serine and proline. The protein contains a predicted N-terminal signal peptide and two classes of glycine-rich amino acid repeats, a GL[G/Y/S/F/L] tripeptide and a GSPLSGF septapeptide. Comparison of genomic and cDNA sequences reveals a 597 by intron within the 3' end of the RIM36 gene. Immuno-electron microscopy demonstrates that RIM36 is predominantly located in the a cell granules of the type III salivary gland acini. An Escherichia coli recombinant form of the proline-rich C-terminal domain of RIM36 reacts with antisera from Bos indicus cattle, either experimentally infested with R. appendiculatus, or exposed to ticks in the field. The 36 kDa protein is strongly recognised on Western blots of salivary gland lysates and soluble extracts of purified R. appendiculatus cement cones by polyclonal antibodies generated against recombinant RIM36, and by antisera from cattle experimentally infested with ticks. The data indicate that this tick cement component is a target of strong antibody responses in cattle exposed to feeding ticks

    A 32 kDa surface antigen of Theileria parva: Characterization and immunization studies

    No full text
    Previous studies using monoclonal antibody (mAb) 4C9 specific for a 32 kDa antigen (p32) of Theileria parva demonstrated expression of the antigen on the surface of the sporozoite, making it a potential antigen for sporozoite neutralization. A full-length cDNA encoding the major merozoite/piroplasm surface antigen (mMPSA) of T. parva was cloned and expressed in bacteria. The expressed product reacted strongly with mAb 4C9, demonstrating identity between the p32 and mMPSA of T. parva. Using immunoblot analysis and immunoelectron microscopy with mAb 4C9 it was shown that the mMPSA is a major antigen of the merozoite and piroplasm at the cell surface, while lower levels of antigen are expressed in the sporozoite and schizont stages. Upregulation of the mMPSA occurs at merogony and can be induced by culturing schizont-infected lymphocytes at 42°C. Recombinant mMPSA of T. parva induced high titres of specific antibodies in cattle but failed to confer protection against a T. parva sporozoite stabilate challenge. The pre-challenge sera also failed to neutralize infectivity of sporozoites in an in vitro assay. Possible reasons for the lack of parasite neutralization in vivo and in vitro are discussed

    Molecular characterisation of a Theileria lestoquardi gene encoding a candidate sporozoite vaccine antigen

    No full text
    Theileria are tick-transmitted, haemoprotozoan parasites infecting wild and domestic ungulates throughout many areas of the world. The most economically important species are T. parva and T. annulata which are pathogenic to cattle, and T. lestoquardi (syn hirci) which is pathogenic to sheep and goats. This report describes the cloning and analysis of the gene encoding the p67/SPAG-1 homologue of T. lestoquardi. This protein which is called SLAG-1 (sporozoite lestoquardi antigen 1), is predicted to have potential as a sporozoite - neutralisation antigen for inclusion in a sub-unit vaccine against T. lestoquardi infection of sheep and goats

    Two Theileria parva CD8 T cell antigen genes are more variable in buffalo than cattle parasites, but differ in pattern of sequence diversity.

    No full text
    BACKGROUND: Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection. METHODOLOGY/PRINCIPAL FINDINGS: Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. CONCLUSIONS/SIGNIFICANCE: The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point
    corecore