7 research outputs found

    Effects of Supplementing Laying Hens with Purified Amino Acid Prepared from Animal Blood

    Get PDF
    The objective of the experiment was to investigate the effects of supplementing laying hens with purified amino acids (PAA) derived from the blood of animal slaughter house on their egg production, egg quality, and immune response. The experiment was based on completely randomized design. A total of 144 Isa Brown laying hens (56-weeks old) were randomly allotted to 4 treatments with 4 pen replications (control, T1: 0.05%, T2: 0.1%, and T3: 0.5% PAA). Each pen housed nine laying hens. The laying hens were reared under a deep litter system. Once a week, a total of 12 eggs of each treatment were collected for egg quality analysis. At the end of the experiment, blood samples were collected for biochemical analysis and cytokines profiles using ELISA kit assays. Hen day egg production and hen house egg production increased significantly (P<0.05) along with the increase in PAA supplementation. The average egg weight increased significantly (P<0.05) with PAA supplementation. Significant differences (P<0.05) were also found in egg shell strength, shell thickness, and albumen ratio. Blood biochemical variables, such as glucose, total cholesterol, blood urea nitrogen (BUN), total bilirubin, and glutamate oxalate transaminase (GOT) were within the normal range. However, the glucose was highest in the control group. Whereas, the total cholesterol and total bilirubin were highest in T2 as compared to control group. Plasma immunoglobulin A (IgA) and immunoglobulin G (IgG), interleukin-1 (IL-1), interleukin-2 (IL-2) concentrations were not affected by PAA supplementation. Plasma interferon gamma (IFNγ) of PAA supplemented treatment groups was significantly (P<0.05) lower than the control group. However, tumor necrosis factor alpha (TNFα) was significantly (P<0.05) higher in T2. On the basis of these results, we conclude that PAA supplementation improved the production performance of laying hens without affecting their health

    Application of Pork Checkoff We Care Sustainability Principles To Pork Production: Water, Nutrition, and Biosecurity

    Get PDF
    The Pork Checkoff program was founded in 1986 as a means to strengthen U.S. pork in the market place (Pork Checkoff). Under this program all U.S. pork producers and importers pay 0.40forevery0.40 for every 100 worth of pigs is sold (Pork Checkoff). Funds are then used for pork promotion, research, and education for producers and consumers (Pork Checkoff). The Pork Checkoff program uses the We Care ethical principles as a means to address “continuous improvement in the pork industry’s production practices and promote a strong record of responsible farming to those outside of the industry” (National Pork Board, 2018a). The six pillars of the We Care principles are food safety, animal wellbeing, public health, environment, people, and community. Under each of the main pillars are many overlapping subtopics. These include water, animal nutrition, manure management, disease prevention, along with many others. The We Care principles, under environmental stewardship, have the goal to improve water usuage. The current goal is to improve reporting and measuring of in-barn water usage (We Care, 2021). Under the environmental stewardship and animal care pillars are objectives for animal nutrition which include providing balanced and age appropriate diets which contribute to efficient growth (We Care). Proper management for both water and nutrition lead to improved manure management, with the goal to reduce manure output as well improving manure quality through the reduction in nutrient and ammonia output of the manure (We Care). The We Care principles also outline objectives for disease prevention under the pillar of food safety. Part of normal practice in swine facilities is the use of biosecurity and sanitation to reduce the risk of disease. Foreign animal diseases are considered a threat to food safety and security. As a means of preparedness the Pork Checkoff has encouraged swine producers to create site-specific enhanced biosecurity plans which help maintain business continuity in the event of a foreign animal disease outbreak (We Care). Due to the relevance of sustainability, animal care, and food safety the following topics of water use, nutrient requirements, and enhanced biosecurity are further analyzed

    EVALUATING DIETARY AMINO ACID ADEQUACY IN HORSES USING ISOTOPIC TECHNIQUES

    Get PDF
    Little is known about amino acid (AA) requirements in horses despite muscle mass accretion being of importance to an athletic species. Isotope methods for determining AA requirements and whole-body protein synthesis (WBPS) had not been previously used in growing horses. The first study herein was the first to apply isotope methods to determine WBPS in growing horses. In the study, weanling colts received two different levels of crude protein. Whole-body protein kinetics indicated that WBPS was greater when the weanlings were fed the diet with a greater crude protein content (P\u3c0.05). The second study sought to determine a lysine requirement for yearling horses using the indicator AA oxidation (IAAO) method. Despite using six dietary levels of lysine; three above and three below the current recommendation, no breakpoint could be determined. Phenylalanine kinetics were not affected by lysine level (P\u3e0.05), but plasma lysine increased linearly with lysine intake (P\u3c0.0001). After comparing dietary AA intakes with current AA requirement recommendations, threonine was a candidate for the limiting AA in the diets used in the first two studies. The objective of the next two studies was to determine if threonine supplementation would increase WBPS. Weanling colts fed a grass forage and commercial concentrate were supplemented with threonine in one study, while adult mares fed a high fiber diet and low threonine concentrate were supplemented with threonine in the other study. In neither case were whole-body protein kinetics affected by threonine supplementation (P\u3e0.05). However, multiple plasma AA concentrations were affected by supplementation (P\u3c0.05) in both studies, suggesting that supplementation of a single AA can affect the metabolism of other AAs. The final study conducted was aimed at improving the IAAO method for use in horses. Intravenous isotope infusion was compared to a less invasive oral infusion. Both infusion methods produced stable plateaus and by calculation, the splanchnic extraction of phenylalanine was found to be 27%. Additional research is needed to determine AA requirements for horses. These studies add insight into equine AA requirements and metabolism and the confirmation of the oral isotope infusion method will allow future experiments to be less invasive

    Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options

    Get PDF
    This review analyzes published data on manure management practices used to mitigate methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Reducing excreted nitrogen (N) and degradable organic carbon (C) by diet manipulation to improve the balance of nutrient inputs with production is an effective practice to reduce CH4 and N2O emissions. Most CH4 is produced during manure storage; therefore, reducing storage time, lowering manure temperature by storing it outside during colder seasons, and capturing and combusting the CH4 produced during storage are effective practices to reduce CH4 emission. Anaerobic digestion with combustion of the gas produced is effective in reducing CH4 emission and organic C content of manure; this increases readily available C and N for microbial processes creating little CH4 and increased N2O emissions following land application. Nitrous oxide emission occurs following land application as a byproduct of nitrification and dentrification processes in the soil, but these processes may also occur in compost, biofilter materials, and permeable storage covers. These microbial processes depend on temperature, moisture content, availability of easily degradable organic C, and oxidation status of the environment, which make N2O emissions and mitigation results highly variable. Managing the fate of ammoniacal N is essential to the success of N2O and CH4 mitigation because ammonia is an important component in the cycling of N through manure, soil, crops, and animal feeds. Manure application techniques such as subsurface injection reduce ammonia and CH4 emissions but can result in increased N2O emissions. Injection works well when combined with anaerobic digestion and solids separation by improving infiltration. Additives such as urease and nitrification inhibitors that inhibit microbial processes have mixed results but are generally effective in controlling N2O emission from intensive grazing systems. Matching plant nutrient requirements with manure fertilization, managing grazing intensity, and using cover crops are effective practices to increase plant N uptake and reduce N2O emissions. Due to system interactions, mitigation practices that reduce emissions in one stage of the manure management process may increase emissions elsewhere, so mitigation practices must be evaluated at the whole farm level

    Guerra de Granada

    Get PDF
    Publicado como t.V de: Crónica de Enrique IVCopia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 201

    Alterations in the blood velocity profile influence the blood flow response during muscle contractions and relaxations

    No full text
    The present study examined the influences of the muscle contraction (MCP) and relaxation (MRP) phases, as well as systole and diastole, on the blood velocity profile and flow in the conduit artery at different dynamic muscle contraction forces. Eight healthy volunteers performed one-legged dynamic knee-extensor exercise at work rates of 5, 10, 20, 30, and 40 W at 60 contractions per minute. The time- and space-averaged, amplitude-weighted, mean (V-mean) and maximum (V-max) blood flow velocities were continuously measured in the common femoral artery during the cardiosystolic (CSP) and cardiodiastolic (CDP) phases during MCP and MRP, respectively. The V-max/V-mean ratio was used as a flow profile index where a ratio of approximately (similar to) 1 indicates a "flat" velocity profile, and a ratio significantly greater than (>>) 1 indicates a "parabolic" velocity profile. At rest, a "steeper' parabolic velocity profile was found during the CDP (ratio: 1.75 +/- 0.06) than during the CSP (ratio: 1.31 +/- 0.02). During the MRP of exercise, the V-max/V-mean ratio shifted to be less steep (p = 20W during the CDP (ratio: 2.15-2.52) and >= 30W during the CSP (ratio: 1.49-1.77), potentially because of a greater retrograde flow component. A higher blood flow furthermore appeared during the MRP compared to during the MCP, coinciding with a greater uniformity of the red blood cells moving at higher blood velocities during the MRP. Thus part of the difference in the magnitude of blood flow during the MRP vs. MCP may be due to the alterations of the blood velocity flow profile
    corecore