470 research outputs found

    Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic

    Get PDF
    A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm

    Numerical prediction of three-dimensional juncture region flow using the parabolic Navier-Stokes equations

    Get PDF
    A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented

    COMOC 2: Two-dimensional aerodynamics sequence, computer program user's guide

    Get PDF
    The COMOC finite element fluid mechanics computer program system is applicable to diverse problem classes. The two dimensional aerodynamics sequence was established for solution of the potential and/or viscous and turbulent flowfields associated with subsonic flight of elementary two dimensional isolated airfoils. The sequence is constituted of three specific flowfield options in COMOC for two dimensional flows. These include the potential flow option, the boundary layer option, and the parabolic Navier-Stokes option. By sequencing through these options, it is possible to computationally construct a weak-interaction model of the aerodynamic flowfield. This report is the user's guide to operation of COMOC for the aerodynamics sequence

    Free electron lasers driven by linear induction accelerators: High power radiation sources

    Get PDF
    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only

    The CMC/3DPNS computer program for prediction of three-dimensional, subsonic, turbulent aerodynamic juncture region flow. Volume 3: Programmers' manual

    Get PDF
    The CMC fluid mechanics program system was developed to transmit the theoretical evolution of finite element numerical solution methodology, applied to nonlinear field problems into a versatile computer code for comprehensive flow field analysis. A detailed view of the code from the standpoint of a computer programmer's use is presented. A system macroflow chart and detailed flow charts of several routines necessary to interact with a theoretican/user to modify the operation of this program are presented. All subroutines and details of usage, primarily for input and output routines are described. Integer and real scalars and a cross reference list denoting subroutine usage for these scalars are outlined. Entry points in dynamic storage vector IZ; the lengths of each vector accompanying the scalar definitions are described. A listing of the routines peculiar to the standard test case and a listing of the input deck and printout for this case are included

    PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison

    Full text link
    The selection, development, or comparison of machine learning methods in data mining can be a difficult task based on the target problem and goals of a particular study. Numerous publicly available real-world and simulated benchmark datasets have emerged from different sources, but their organization and adoption as standards have been inconsistent. As such, selecting and curating specific benchmarks remains an unnecessary burden on machine learning practitioners and data scientists. The present study introduces an accessible, curated, and developing public benchmark resource to facilitate identification of the strengths and weaknesses of different machine learning methodologies. We compare meta-features among the current set of benchmark datasets in this resource to characterize the diversity of available data. Finally, we apply a number of established machine learning methods to the entire benchmark suite and analyze how datasets and algorithms cluster in terms of performance. This work is an important first step towards understanding the limitations of popular benchmarking suites and developing a resource that connects existing benchmarking standards to more diverse and efficient standards in the future.Comment: 14 pages, 5 figures, submitted for review to JML

    An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide

    Get PDF
    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide

    Asymmetry of social interactions and its role in link predictability: the case of coauthorship networks

    Full text link
    The paper provides important insights into understanding the factors that influence tie strength in social networks. Using local network measures that take into account asymmetry of social interactions we show that the observed tie strength is a kind of compromise, which depends on the relative strength of the tie as seen from its both ends. This statement is supported by the Granovetter-like, strongly positive weight-topology correlations, in the form of a power-law relationship between the asymmetric tie strength and asymmetric neighbourhood overlap, observed in three different real coauthorship networks and in a synthetic model of scientific collaboration. This observation is juxtaposed against the current misconception that coauthorship networks, being the proxy of scientific collaboration networks, contradict the Granovetter's strength of weak ties hypothesis, and the reasons for this misconception are explained. Finally, by testing various link similarity scores, it is shown that taking into account the asymmetry of social ties can remarkably increase the efficiency of link prediction methods. The perspective outlined also allows us to comment on the surprisingly high performance of the resource allocation index -- one of the most recognizable and effective local similarity scores -- which can be rationalized by the strong triadic closure property, assuming that the property takes into account the asymmetry of social ties

    An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 1: Theory and validations

    Get PDF
    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide

    Prevalence Rates of Arthritis Among US Older Adults with Varying Degrees of Depression: Findings from the 2011 to 2014 National Health and Nutrition Examination Survey

    Get PDF
    Arthritis and depressive symptoms often interact and negatively influence one another to worsen mental and physical health outcomes. Better characterization of arthritis rates among older adults with different levels of depressive symptoms is an important step toward informing mental health professionals of the need to detect and respond to arthritis and related mental health complications. The primary objective is to determine arthritis rates among US older adults with varying degrees of depression. Using National Health and Nutrition Examination Survey 2011 to 2014 data (N = 4792), we first identified participants aged ≥50 years. Measures screened for depressive symptoms and self‐reported doctor‐diagnosed arthritis. Weighted logistic regression models were conducted. Prevalence of arthritis was 55.0%, 62.9%, and 67.8% in participants with minor, moderate, and severe depression, respectively. In both unadjusted and adjusted regression models, a significant association between moderate depression and arthritis persisted. There were also significant associations between minor and severe depression with arthritis. Arthritis is commonly reported in participants with varying degrees of depression. This study highlights the importance of screening for and treating arthritis‐related pain in older adults with depressive symptoms and the need for future geriatric psychiatry research on developing integrated biopsychosocial interventions for these common conditions
    corecore