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SUMMARY

A generalized coordinates form of the penalty finite element algorithm

for the three-dimensional parabolic Navier-Stokes equations for turbulent

. subsonic flows has been derived. This algorithm formulation requires only

three distinct hypermatrices, and is applicable using any boundary fitted

coordinate transformation procedure. The tensor matrix product approxima-

tion to the Jacobian of the Newton linear algebra matrix statement has

been derived. The Newton algorithm has been restructured to replace large

sparse matrix solution procedures with grid sweeping, using c_-block

tridiagonal matrices, where _ equals the number of dependent variables.

Numerical experiments have been conducted, and the resultant data gives

guidance on potentially preferred tensor product constructions for the

penalty finite element 3DPNSalgorithm.



INTRODUCTION

The time-averaged, three dimensional Navier-Stokes equations, for

steady, turbulent, subsonic flow of a compressible, heat conducting fluid,

can be simplified to admit use of an efficient space marching numerical

solution procedure under certain restrictions. Baker, et.al. [I] documents

the derivation of the simplified, so-called "parabolic Navier-Stokes"

equation set using formal ordering arguments. References [2-7] document

application of a penalty, finite numerical solution algorithm for the

parabolic Navier-Stokes equations for a variety of subsonic flow configu-

rations, including an embedding within an interaction algorithm to impose

axial pressure gradient feedback. These results have provided a basic

assessment of the accuracy, convergence and versatility aspects of the

finite element penalty algorithm, as well as detailed comparison between

experimental data and prediction for various turbulent flow geometries.

These numerical predictions have been accomplished using the CMC:3DPNS

computer code [8-I0] which has evolved and matured principally under

support of this contract. With the theoretical construction well verified,

the requirement to improve efficiency becomes of next importance. The

specific goals of this contract modification were to construct and evaluate

a matrix tensor product factorization of the Newton iteration algorithm and

to investigate inclusion of an embedded Poisson equation solution procedure.

The results of pertinent analyses are documented in this report.



SYMBOLS

a boundary condition coefficient; parameter

A initial value matrix; hypermatrix prefix

b constant

B hypermatrix prefix; matrix i

C turbulence model coefficient

Eu Euler Number

f function of known argument

F finite element matrix; discretized equation system

h metric coefficient

H stagnation enthalpy; Hilbert space

i index

j index

J Jacobian

k finite element basis degree; turbulence kinetic energy

summation index; differential operator

L differential operator

M number of finite elements spanning Rn

n unit normal vector; dimension of space

N finite element cardinal basis; discrete index

p pressure; iteration index

q heat flux vector; generalized dependent variable

Q generalized semi-discrete dependent variable •

Rn spatial domain of differential operator

Re Reynolds Number

s,S source term '

Se finite element assembly operator

ui velocity vector
u_u_ Reynolds kinematic stress tensorij
U convection matrix

x i Cartesian coordinate system
partial derivative operator

_R boundary of solution domain Rn

Kronecker delta; parameter

6Q iteration vector
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A mesh measure; increment

c isotropicdissipationfunction;parameter

transformedcoordinate

ni curvilinearcoordinatesystem

heat conductivitycoefficient

multiplier

kinematicviscosity

p density

o.. Stokes stress tensor
Ij

Z summation

@ constraintdependentvariable

sublayerdampingfunction

solutiondomain

Superscripts

e finite elementreference

h solutionapproximation

p iterationindex-

T matrix transpose

" ordinaryderivative

Subscripts

dependent variable index

e finite elementreference

i,j,k,_ tensor indices

j integrationstep index

o referencestate

Notation

{ } column matrix

[ ] squarematrix

LJ union

€ belongsto
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PROBLEMSTATEMENT

Overview

The basic requirementsof a numericalalgorithmconstructionfor the

three-dimensionalparabolicNavier-Stokes(3DPNS)equationset are accuracy,

geometricversatilityand efficiency. Any theoreticalbasis,e.g., finite

difference,finite volume,finite element,etc., appliedto constructinga

3DPNS algorithmultimatelyyields the linearalgebrastatement{F} = {0},

where elementsof {F} are stronglynonlinearfunctionsof the dependent

variableset q_(xj). Dependentupon the algorithmdesigner'sdecisions,

members of the set q_ can includedensity,mean velocityvector, stagnation
enthalapy,turbulentkineticenergy, isotropicdissipationfunction,pressure

and/or scalar potentialfields and six componentsof the Reynoldsstress

tensor.

For the subjectfinite elementpenaltyalgorithmstatement,and the

3DPNS equationset, the functionalform of the algebrastatementis,

{Fl(k, _,_, Axe, {QI})} = {0} (I)

In equation I, k is the polynomial degree of the finite element basis

selected to construct the semi-discrete approximation q_(xj)_ to qm(xi),
is the penalty function scalar multiplier, 0 is the implicitness factor

of the downstream integration step Axl, where O z ½ is the trapezoidal

and {Ql(xl)} is the array of expansion coefficients of q_(xj),_ evaluated

!

rule,

at the node coordinates of the (spatial) discretization UR_ of the 3DPNS
solution domain _ z R2x x1. For all 0 > O, equation I is a nonlinear

algebraic equation system eligible for solution using any of a multitude of

(approximation) procedures. These all can be interpreted within the frame-

work of the basic Newton iteration algorithm matrix solution statement.

[j({QI})]P {aQl _p+I = - P (2)j+l "j+l {FI}j+I

where p is the iteration index at step xj+ I, and

_p+l p _p+l (3)
{QI,j+1 _ {QI}j+1 + {_QI,j+1



The Jacobian [J] appearingin equation2, is by definitionthe squarematrix,

_{FI}
[J({QI})] - T[-QJ} (4)

where both I and J range 1 . 16.

This contractual project phase initiated evaluation of decisions made in

construction of equations I-4, as they principally affect algorithm

accuracy and efficiency.

Parabolic Navier-Stokes Equations

The three-dimensional parabolic Navier-Stokes (3DPNS) equations are a

simplification of the steady, three-dimensional time-averaged Navier-Stokes

equations, which in Cartesian tensor conservation form are

L(p) Bxj uj = 0 (5)

L(pui) = pu.u.13 + P6ij + PUiUj--'--"- oij = 0 (6)

L(pH) _ _ IpHuj _ ui(_ij _- pH_'u _ _ u_([_ -_- qj 1
" Bxj j I Ij = 0 (7)

Bxj (Ck_ pufu_ - lJ6ij

_ Dui
+ + :o (.8)

J

L(p_) a [p k ..__._aE 1 _t,._xj. .ujE+ C_-_.PUiUj_--_i+ Clpu'---Tu-T_I 3 k BxjZ

+ C2 pe2 _ 0 (9)ek
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In equations 5-9 the usual superscript bar notation denoting time-averaged

quantities [11] has been deleted for clarity. The time-averaged dependent

variables are density (p), mean momentum vector (PUi), pressure (p) and

stagnation enthalpy (H). Further, 6ij denotes the Kronecker delta, and the

Stoke's stress tensor (aij) and heat flux vector (qi) are defined as,

_L_[Ei
aij ---Re j - 3.ij (I0)

(II)
qj - -K Bx.

J

where I]and _ are laminarviscosityand heat conductivityrespectively.

Eij is the symmetricmean flow strain rate tensor.

I@ui _uj-J

Finally,-uiuj is the symmetricReynoldsstress tensorwith trace equal
to 2k, where k is the turbulentkineticenergy. For presentpurposes,

ui_ is assumedcorrelatedin terms of k, uj and €, the isotropicdissipa-
tion function,in the form,

_.u; - Cik5 i - c,ck--_-2 - C2C,_- (13)ul j J Eij €2 EikEkj

where the Ca, 1 < __< 4, are known constants[I].

The parabolicapproximationto the steady flow Navier-Stokesset, equations

5-13, is generatedby assuminga principaldirectionof the flow persists,

say parallelto the (curvi-linear)coordinatex_. Assuming the corresponding

• mean velocitycomponentul is of order unity, i.e., O(1), and that the other

two orthogonalcomponentsu_ are smaller,say of 0(5), then for modest
densityvariationthe continuityequationl confirmsthat for @/_xl _ O(1),

then _/_x_ = O(6-1).Proceedingthroughthe analysisdetails [12] confirms

that the O(1) 3DPNS equationset is



......... !

i

i

L(_,)- _ [r,uj[ =o (14)axj

- u]u. + + _)

L(pu_) - ax k P6kz + p = 0 (16)

[] j_ a _a_ pH'u_ - Ka_x-_ uioi9" _ u_o_9' = 0 (17)L(pH) 3xj pHuj + _x_,_

[] [ - ]_ a pkuj + a k Cu_- uGjZ) _k
L(pk) axj _ (PiCk--_ uO

gu_

+ pu{u_ ax_ + pc = 0 (18)
[

+ C_pz2/k : 0 (19)

In equations 14-19 the tensor index summation convention is 1 < (i,j) < 3

and 2 _ (k, 4) _ 3. The Reynolds stress tensor constitutive equation 13

also becomes considerably simplified under the ordering analysis. For example,

in rectangular Cartesian coordinates, and retaining the first two orders of

terms yields equation 20. An equation of state p = p(p,H) completes the basic /
3DPNS statement.

/

\
\
\

\' B



o(_) 0(62)

A
'" f ,f-

k° au_ +
u{u_. : Clk - C2C.Tz [_TJ ._ "-€-L_-_l]

k_Faa_2 k2rau2]
u_u_: C_k-c2c,TLT_;] -2C.TL_-_]

k'F-suil_ -2c,,-_.au,7u_'u_" : C,k- c2c,TL_-_T] .[T£J
,., k' Faullau2 _u.__]

k2 [.au,7 - C_"71..a"-_'3 !"_-7"3+ axzJu_'u:t= - c,,-TLT_ij

_-7;21a-_7+ ax2.11

^ kalau, r_u_u'u" : - c k_lau[l - C2c--r'--'-' " + ---
1, "_ Lax,] '_" Lax L x,ax=,

o

- _ ^ k2I'au2 _u3{ (20)
^ k_iaul au,,_l t"TIT_; + ax=lu_u_ : - C2c_7[_-_= ax _.

3DPNS Equation Set Completion

Equations 14-20 do not represent a well-posed, initial-boundary value

problem statement for the dependent variable set. In particular, equation

14 is the sole definition for u£ , yielding an underdetermined system. The

finite element penalty algorithm construction of Baker [l] yields a well-

posed problem statement by inclusion of both 0(6) transverse momentum

equations, definition of an auxiliary harmonic function for a penalty

constraint, and definition of complementary and particular solutions to a

_ pressure Poisson equation formed from equation 16.

The derived pressure Poisson equation is,

- 1aL(pu£) a2 a2 I_

L(p) =- ax£ ax_, + ax£axk 7ku£ = 0 (21)



the solution to which is defined as

P(Xi) - Pc(X_' xl) + pp(X_, x_) (22)

The complementary pressure Pc(X_, xl) is the solution to the homogeneous

form of equation 21 with exterior flow boundary conditions [I]o The

particular pressure is computed throughout the 3DPNSsolution from equation

21, and added in a delayed manner into equation 22, used in the ul momentum

equation solution, yielding a multi-pass interaction algorithm.

The retained 0(6) transverse momentumequation set is

[pu_uj] _x k iOk#.l = 0 (23)LS(pu;L) _xj

The auxiliary harmonic variable @ is defined as the solution to a Poisson

equation, driven by the continuity equation 13, in the form

= [puj] : o (24)
_x_ _xj

Finite Element Penalty Algorithm

As a consequence of the 3DPNS equation set completion, equations 15,

16+23, 17. 19, 21 and 24, define a well-posed, initial-boundary value

statement for the dependent variable set qa(xj) -_ {q(xj)} = {PUl,pUp,pH ,

pk, p_, Pc' Pp' 01. The equation of state, p = p(p,H), and equation 20 are

algebraic definitions for the remaining seven members {p, UlUj }.

Therefore, the first nine members of {q(xj)} are eligible for constraint
on the solution domain boundary, _f_ _=_R x x_, by a linear combination of

Dirichlet and Neumann boundary conditions of the form

_3q_
_(q_) -= ar_ _ n_ + a_ = 0q_ + a_ -- (25)

_x_

I0



In equation25, the a_ are defined to enforcethe appropriateconstraint
for each variable,c.f., Baker [2, 12]. Since the remainingseven members

of {q(xj)! are defined by algebraicequations,no boundaryconditionsare

appropriate. Finally,the first six membersof {q(xj)}are required defined

on the initialsolutionplane, f_o= R2 x x_(O), by an appropriateinitial

condit1"on'{qo(X _, x1(O))}.

The complete derivation of the finite element penalty constraint

numerical solution algorithm is given in [I, 12]. Briefly, the semi-

discrete approximation for each member of the set qi(xj) is formed by the

union of elemental approximations qe(xj) as,

q_(xj) -- qh(xj) - U qe(xj) (26)e

In turn, each elementalsemi-discreteapproximation,valid on the
2

representativefinite elementdomain Qe _ Re x x_, is formed as an expansion

on the cardinal basis {Nk(X_)},the members of which are (typically)
polynominalscomplete to degree k, in the form

q_(xj) _ {Nk(X_)}T {QI(x_)}e (27)

In equation27, {'} denotesa column matrix, superscriptT its transpose,
2

subscripte denotes pertainingto Re , and the elementsof {QI}e are the
evaluationof the semi-discreteapproximationat the nodal coordinatesof R2e"

A basic requirementin any algorithmconstructionis a formal statement

regardingconstrainton the error formed by employingthe semi-discrete

approximationfor the differentialequationset. The finite element

algorithmconstructionrequiresthe semi-discreteapproximationerro_ to

be orthogonalto the basis employedto constructqh(xj).: For all members
h the resultant error constraint statement is,of {qh} exceptu_ ,

i h _ I qh()dx {0} (28)
{Nk(X_)} L(q_)dx + B {Nk(X_)}9.( ----
2 @R

II



where B is a scalarmultiplier selectedto achievecancellationof the

middle term in equation25. The error extremizationstatementfor the
h

of {qh} is,members u_

r
R2 _R

I a{Nk }
+ k L(@h)d_5 {0 } (29)

_xg
R2

where I is an arbitrary parameter modifying the penalty term which

constrains the error extremization by the continuity equation (error).

Equations 28-29 define the finite element penalty algorithm semi-discrete

error constraint statement for the 3DPNS equation set. For the non-initial-

valued dependent variables, equation 28 yields the linear algebra statement

{FI} = {0} , recall equation I. For the initial-valued variables, equations

28-29 yield a coupled ordinary differential equation set,

d{Ql} + {B(.QI}} = {0} (30)[A] dxl---

which is transformed to a linear algebra statement using a Taylor series,

for example,

{FI} -_-{QI}j+ 1 - {QI}j - Ax, {QI}j+ 0 + .... {0} (31)

where superscript prime denotes the ordinary derivative and @> 0 implies

an implicit statement since equation 30 is quite nonlinear.

Hence, the final fully discrete approximation error constraint statement

is the nonlinear algebraic equation set,

{Fl(k, _, O, &xl, {QI})} = {0} (32)

where 1 _ I _ 16, see equation I. The Newton algorithm solution for

equation 32 is given in equations 2-4.

12



DISCUSSIONANDRESULTS

Generalized Coordinates

A basic requirement for a 3DPNSalgorithm is geometric versatility, such

that the discretization of the transverse plane solution domain R2 can be

efficiently embedded within a boundary comprised of the union of select

aerodynamic surfaces and freestream interfaces. The term "generalized

coordinates" has gained acceptance in describing an algorithm construction

suitable for use with a regularizing, boundary fitted coordinate transfor-

mation. This construction also impacts directly on the efficiency of an

implicit algorithm, since it usually facilitates factorization of the

linear algebra statement Jacobian, recall equation 2. An objective of the

current project is to construct and evaluate a matrix tensor product

approximation to the Newton Jacobian of the finite element 3DPNSalgorithm [8].

The required step is to derive the generalized coordinates form of the

finite element penalty algorithm, equations 28-29. A multitude of procedures

are available to generate regularizing transformations, c.f., [13], and each

may be viewed as generating an approximation to the mapping,

x i = xi(nj) (33)

at a finite number of coordinate triples on the domain R = R2 x x I. For the

space-marched 3DPNSequation set, equation 33 may be conveniently decomposed

into an xl-oriented grid-stretching transformation, x1= Xl(_j), and a
regularizing transformation on R2 mapping the boundaries DRonto coordinate

surfaces of nj, J = 1, 2. Denote the generated set of coordinate pairs on
R2 as {XI} , I = 2, 3. The number of entries in {XI} equals twice the mesh

characterization of the discretization UR_ of R2. (For example, for a 41X41
mesh, there are 2(41)(41) = 3362 entries in {XI}.) On any (each) finite

element domain R_, the specific form of equation 33 is,

= {Nk(_)}T{XI}e (34)X i

for x i _ R2"e In equation 34, the elements of {Xl} e are the appropriate

members of {Xl}, and the interpolation basis {Nk(_)}L is (potentially)
identical to the approximation subspace for q_, equation 27.1

13



Equation 34 is of general utility since the elements of {Nk(_) are well '

known fork s I, using either triangular or quadrilateral shaped finite
2

elements Re, with or without curved sides. The algorithm requirement is to

transform the derivatives _/_x_ and B/_x_, see equations 15-19, 21-24, as

they appear in the penalty algorithm statement, equations 28-29. A grid

stretching parallel to the xl coordinate direction introduces additional

derivatives i,n the x_ plane, upon transformation to the _ coordinate system? z

of the form [8]

_ - h2 _ h3 _ - _ h_ _ (35)
_xl . _ _x2 _x3 B_ - _x_

Therefore, the general form of the initial-valued partial differential

equations 15, 16+23, 17-19, of the 3DPNSset is

ulq + (l-h_)qu__ + + s = 0 (36)' 0'.

, for I < m < 6 in equation36, and 2 < _ < 3Table 1 lists qm, T _ and s .... .

Table 1. Variables and Parameters in Equation 36

q_ T_ S

I PUl _ - O1_ - h_p _p
-- _C

2 PU2 pu U--'-r#- O2_ + p62£ 0

3 pu_ pU3U----r_o3_ + p63£ 0

_H

4 ui°i .

5 pk Ck _ puju_ - _6j_ _k _ _x__xj

k _ DE CI _ _ _ul C2 _¢2
6 pE C # puju_ axj _ pu_u_ k g-_.+

14



The generalizedcoordinatesconstructionrequirestransformationof the

planar divergenceoperator a/axe,when equation36 is insertedinto equation

28. Using a Green-Gaussform of the divergencetheoremon the second term

in equation 36, yields

[lh lI ! I hlhl{Nk} L q d_ + 6 {Nk}Sl(qh_)d_ : {N} ulq_ + so

R2 aR 2

f [ h ' huh Th n_do+ {N} (1- __)qc__ +

aR

- ank ax_ LI- q_ _ + T_

R2

h + a_ qa n_ + a da (37)+_ {N__,q_ nTk T_
aR

The evaluation of equation 37 is accomplished by performing the integrals

on an element-by-element basis, and assembling the resultant contributions

into {FI} using the matrix assembly operator Se, c.f., [12, Ch. 2]. Since

the elements of {Nk(_)} are known functions of n, the only requirement is
2 From equationevaluation of ank/aX _ on a generic finite element domain Re.

34, the 2X2 square matrix defining the Jacobian of the forward transformation

is

15



_x_ ][J]e : [J({Xl}e)] - D--_-k]e (38)

Thus, the elements of the inverse transformation Jacobian are,

[Bnk] : [j]e I _ 1 [C]e (39)
L_]e det Je

where [C] is the 2X2 transformed cofactor matrix of [J]e' the elements of

which are algebraic functions of nk and {XI} e. The differential element d_
in equation 37 becomes

d_ = det ae d_ (40)

Finally, it is convenient to define the contravariant components of the

convection velocity semi-discrete approximation u on Re as

-e FBnkl e e

u k =_det Je i.-iL_-_je (l-h_)u£ = (l-h__) [C]_ u_ (41)

With equations 38-41, and recasting evaluation of equation 37 as the

assembly of integrals over UR_ , the generalizedcoordinates form of the
finite element algorithm statement, equation 28, becomes

R_ DR

Se det Je {N} {N} T {UIQI} e e

2
e

16



_ }T

- {UBARK}_ {N} -_ {N} {N {QI} e dn

2

D .

. - {ETAKL}Te {N} _-_k {N} {N} T {TAUIL} e dn

2

e

+ _ {N} [a_ qe + a_ ] det Je do

DR

+ {N} [(l-h_%) {UL}T {N} {N} T {QI} e

DR

+  TAU L}e Jela1 (42)

In writing equation 42, it has been assumed the only variable possessing

a constrained normal derivative boundary condition is stagnation enthalpy.

Hence, the fourth term contains only q_, and the normal derivative term in

equation 25 is cancelled by the corresponsing term in the third integral in

equation 38 by defining B _ K, see Table I. A second assumption is that

det Je is adequately represented as an elemental scalar, which is a commission

of interpolation error (only) on a sufficiently refined mesh. The elements

of the direction cosine matrix {ETAKI} e are defined by the interpolation.

[Dn_ _ 1 {Nk }T {ETAKL}e (43)
_Tk] - det Je

17



For example,defining k = 1 in equation43, for the bilineartensor

productbasis on straight-sidedquadrilaterals,numberingnodes counter

clockwise,and defining the elementsof the nodal array {Xl}e as {YJ,.ZJ,

l _ J _ 4}e , the four arrays 2{ETAKL}e are, c.f., [12, Ch. 8].

Z4-ZI YI-Y4 ZI-Z2 Y2-YI

Z3-Z2 Y2-Y3 ZI-Z2 Y2-Y!

2 {ETAKL}e =
Z3-Z2 Y2-Y3 , Z4-Z3 , Y3-Y4

(44)
Z4-Zl Yl -Y4 Z4-Z3 Y3-Y4

(2,2) (2,3) (3,2) (3,3)
e e e e

The indices in the parenthesisin equation44 denote (K, L). Finally,the

matrix elementsof {UBARK}e are defined by the interpolation.

-e

Uk - {Nk}T {UBARK}e (45)

Proceedingthroughthe algebrayields

{UBARK}e : {ETAKL}e {Nk}T {UL} e (46)

Since the evaluationof equation46 is at nodes, the elementsof {Nk} reduce

delta; hence, {Nk}T{UL}esimply selectsthe correctnodal
to the Kronecker

value out of the elementalarrays {UL}e , L = 2, 3.

In equations42-46, the indices K, L are tensor summationindices,while I
denotes the

appropriatemember of {q_}. Every matrix denoted by a subscript

e in equation42 is independentof the q coordinatesystem spanningR2 hencee'

can be extractedoutside the integral. The expressionsremainingwithin the

integrandare polynomialson q , for all definitionsof completenessk of the

semi-discreteapproximation,recall equations26-27. The order of {Nk} depends
upon k, as do all the integrelsin equation42, and each is readily evaluated

using numericalquadrature. The basic structureof equation42 is thus defined,

using a standardizedhypermatrixnomenclature[12], as

18



h d_ + _ {Nk} _ q_(Nk} L q_

2 DR

= Se [det Je [B200]_{UIQI} e + det Je [B200] {Sl}e

-[{UBARK} T [B3OKO]- [l-hk_ fiK det de {UK}T [A3OOO]){QI} e

- [{ETAKL}T [B3OKO]- 6L det Je [A200] {TAUIL}e

+ K 614 det Je r£|a4[A200]{QI}e + a4 {AIo}H{0} (47)I B

._ Note that equation47 is in the form of equation30, with the definition

[A] z Se[det Je[B200]]. The generalizedcoordinatesfinite element penalty
"- algorithm involves definition of only three distinct standard matrices,

2 and depend[B200] and [B3OKO], K = 2, 3, on R_. These are independent of Re

only on the degree k of the semi-discrete approximation. In addition, there

are the three standard matrices [A200], [A3000] and {AIO}, defined on the

boundary of R2, hence evaluated on a one-dimensional element R_. In the

second and third lines of equation 47, the terms involving [A .-] are the

residuals from use of the Green-Gauss theorem, see equation 37 The terms in

the fourth line result from the heat convection boundary condition for

stagnation enthalpy. The tensor indices range 2 _ (K, L) _ 3, the subscript

takes on the value of K, nK and 6L are unit normal vectors to R2, and
1 < I < 16 denotes the ordered members of the dependent variable array.

Finally, det Je is the average value on R_ of the determinant of the transfor-

mation Jacobian, equation 38, and {ETAKL}e and {UBARK}e are element dependent
matrices defined in equations 43-46. The Appendix lists the defined matrices

[A • -] and [B- -]. for k = 1 in equation 27.

19
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Tensor Matrix ProductJacobian

The form of equation47 is well suited to formationof a tensor (outer)

matrix productapproximationto the Newton iterationalgorithmJacobian,

see equations2.and 4, upon definitionand use of a tensor productcardinal

2 (whichbasis {N }, equation34, on quadrilateralfinite elementdomainsRe

could be curved-sided,k > l). In this instance,the Newton algorithm

Jacobian is approximatedby the tensormatrix productconstruction,

[J({QI})]=> [J2] @ [J3] (48)

where 0 denotes the outer product [14]. Equation 2 then becomes of the form

[J2] 8 [J3] {_QI} = - {FI} (49)

Making the definition [J3] {6QI} z {aPI}, equation49 is solved by sweeping

the mesh parallel to n2 , to determine{aPI},and then sweepingthe mesh

parallelto n3 to complete the solution,i.e.,

[J2] {6PI} e = - {FI} e

[J3] {6QI} e _ {6PI} e (50)

The attraction of the approximate solution statement, equation 50, is

replacement of the large sparse matrix [J], equation 4, by two block

tri- or penta-diagonal matrices [Jn] , with the corresponding significant
reduction in computer storage and LU decomposition computer CPUtime.

The detraction of the statement is degradation of the convergence rate

associated with the exact Newton algorithm statement. Of course, for the

16-dependent variable 3DPNSequation set it is impossible to construct and

use the exact Jacobian. Hence, the trade-off is degree of approximation

versus associated cost. The critical measure is convergence rate since

this determines the number of passes through the linear algebra statement.

Study Problem Statement

The tensor matrix product approximation to the 3DPNS Newton Algorithm

Jacobian is formed by evaluation of the appropriate integrals in _{FI}/_{QJ}
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I
on a one-dimensionaldomain Re. The CMC:3DPNScode [I0] was reorganizedto

permit constructionof a one-dimensionalJacobian,independentof the sub-

routinesused to generate {FI}. The basic issue is convergence,and the

study problem is solutionof the 2DPNS equationsfor laminarand/or turbulent

flow. The code was indexedto permit use of the original algorithmformula-

tion, as well as severalvariantsof the tensor productconstruction. The

2DPNS algorithmconstructionfor turbulentflow using the k-_ closurewith

a Reynolds stress algebraicmodel was established,however,the detailed

discussion is limited to the equation system for laminar isoenergetic flow.

The governing2DPNS differentialequationsystem,see equation36, for

{q} = {u, v, p, _}, is

a (uu)+' + a I _ aT_] = o (51)L(u) = -_ p -_ vu Re

a (uv)+a I PL6(v) :_-_ _ vv + -- : 0 (52)p Re

]
i

L(@) : a2@ au av : 0 (54)
ay2 ,_x ,_y

, _ l d_ is an input parameter(correspondingto the
In equation51, p - p dx

Pc(Xl, x_) solution,equations21-22, for 3DPNS). Insertingequations51-54
into the finite elementpenaltyaIgorithm,equations28-29, see equation42,

proceedingthroughthe algebra,equation47, and insertingthe results for

h vhu and into the trapezoidalrule (0=-_)form of equation31, equation 32

becomesthe set.

e e = { j+l + Uj}e }j+l - {U}j

+-_X[{V}Te [A3001] {U}e + Ae{P'}e + _e{NU}T[A3OII]{U} 1 (55)
j+1,j
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T{F2} = S{FV}ee = Se Ae{UP+I + Uj}e [A3000] {v}P+I - {V}j

+ A__I{v}Te [A3OOI]{V} e + 1 [A201]{P}
p e

1 {NU}Te [A3011]{V}e I j+l, j

+ Cqb [A201] {SO}e]j+l] (56)

= [_! ] 1 T
{F3} -- Se{FP}e SI_L_e[A211 I P} e + E--u- {U}e

[A301 0] {VP} e

T [A3011] {V}_]1 {V}e
+ EuZ_----_ _j j+l

(57)

{F4} --- S{Fq_}e = S [A211] {qb}e + Ae [A200]{UP}e + [A201] {V} e (58)
eLSe j+l

The newly defined standard matrices [A..] are also listed in the Appendix.

Further, det Je _ Ae the measure of Rl and its occurrence has been cleared' e'

throughout equations 55-58, such that [A...]are integer arrays with a common

divisor. The continuity equation has been explicitly employed to clear extra

terms in equations 55-56, {'}_+I denotes evaluation with the current iterate

at Xj+l, {.}j denotes the converged solution at the previous step (xj),

(')j+l,j indicates evaluation with both {'}_+I and {-}j, followed by addition,

and [']j+l denotes evaluation with {'}_+I" The arrays {UP} e and {VP} e contain

a finite difference approximation for _-_{U} e and {V} e, evaluated at

xj+ I. The elements of {NU} e are _/Re, where Re is the Reynolds number, Eu is
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the Euler number,and {P'}econtains_ .

The last term in equation56 is the continuityconstraintpenaltyterm,

the selected form of the _- modified integralin equation29. Cqbis a constant

of order unity, and [U]e is a diagonalmatrix with elementstaken from {U}e

in the same order. (Thismultiplier improvesthe resolutionof {V} in the

lower reachesof the boundarylayer. The penaltyterm dependentvariable is

{SO}e, definedas the sum of the previoussolutionsto equation58 at step

xj+l, i.e.,

p+1 p+l

{So}j+1- {S@}_+I + {_}j+l

° I= {SO}j+l + {O}j+1 + {60}j+l

p-I I p-I p ]
= {SO}j+l + {O}j+l + {60}j+l

p p+l
+ {O}j+I + {_}j+l ' etc. (59)

Furthermore, {Sd#}li+l_- {SO}j, which is the identification as well
for the

first estimate of the dependent variable set, i,e., {QI}_+ 1 - {QI}j. This

definition of {S@}, as the penalty variable, is a considerable modification

of the orginal algorithm construction in CMC:3DPNS,to permit solution for

{60} within equation 2, rather than a separate Poisson solution for {@}.

Equations 55-59 constitute the linear algebra specification of the 2DPNS

algorithm. The Newton algorithm Jacobian matrices are derived from the

definition, equation 4, using equations 55-58. They are identical to the

factor [J2] of the tensor product approximation for the 3DPNS statement,
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equation 50. Recalling that [J] -- Se[J]e , the elemental components of the

4-block, tridiagonal Jacobian .{J2] are:

[JUU]e : Ae{U}Te [A3000] +-_ [A3001] + ]-_ {Nu}Te [A301I]]Ae

- AX{u}T [A3100][JUV]e 2

[JUP] e : [0]

[JU¢] e = [0] (60)

1 p T
[JVV]e = 2Ae {Uj+I + Uj }e [A3000]

T [A3000][JVU]e = ½Ae {V_+1 - Vj}e.

Ae

[JVP]e - 2p [A201]

[JV¢] e : C¢ FU]e[A201] (61)

_ 1

[JPP]e pAe [A211]

_ 1 {vp}Te [A3010][JPU]e Eu

Te 1 {V}eT [A3011] + [A3110]I "_ a {U} [A3010] + EUAe
[aPV]e EU

J

[aP¢]e = [0] (62)
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1 [A211]
:

[J¢U]e = aAe [A200]

[JCV]e : [A201]

[JCP]e : [0] (63)

In equations 60-63 all evaluations are made using {'}_+I unless otherwise

noted. The parameter "a" in equations 62-63 denotes the fraction of {QI}_+IJ

used in the finite difference approximation for _€{QI} at x j. l -

Numerical Results

Numerical experiments have been executed to evaluate the 2DPNSalgorithm

using various approximations to the Newton algorithm Jacobian, equations

60-63. The exact construction is
P

[JUU]e [JUV]e 0 0

[JVU] e [JVV] e [JVP] e [JV@]e
Se {_Ql,j+l_P+l= _ {FI}Pj+I (64)

[JPU]e [JPV]e [JPP]e 0

[JCU]e [JCV] e 0 [J¢¢]e

j+l

For reference, both the 2D and 3D algorithm constructions currently oper-

ational in the CMC:3DPNScode approximate equation 64 by its diagonal

entries only. This decouples the dependent variable set solution in the

nondiagonal terms premultiplied by Ax, eauations 60-63, but retains the

Ax-coupling through convection, pressure gradient and viscous-turbulent

effects. Further, the original algorithm Poisson equation solutions are on

{p} and {¢}, rather than {6P} and {6¢}, and both are computed using the most
_p+l )p+l

recent solutions {U,j+l, {V,j+I, etc., rather than {QIJ_+ I, see equation 2.

The 2D algorithm construction for solution of {P} and {¢} was rearranged

" and the code modifiedto permit PNS solutionsusing variousapproximations

to [J]. The nearestequivalentto the originalalgorithmconstructionis,
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[JUU] P

[JVV]
_p+l p

[Jpp] {6QI,j+ 1 =- {FI}j+ 1 (65)

[J¢¢]
j+l

where {FP} and {F@} are now evaluatedusing {QI}_+I. Definingthe penalty

variableas {S@}, see equations56 and 59, reproducedthe originalalgorithm

solutiondata to within negligibledifferences. The (finally)selected

laminarflow standardtest case used a geometricallynonuniform,unstretched

grid of M=56 elements spanning3_o. The initializationof {U}o employedthe

Blasiussolution,and the boundarylayer thicknessdoubledover the integra-

tion lengthAx = 4, achieved in nominally20 nonuniformintegrationsteps _x
at Re = 3.2xi06.

Table 2 summarizesdata confirmingthe modified 2DPNS algorithmcan

generatean acceptablyaccurate solutionon the M=56 mesh, with nodal coor-

dinatesas listed in column I. Columns2-4 comparethe axial velocity

profilesof the Blasius solution,the direct boundarylayer (2DBL)solution

using [JUU] and a direct trapezoidalrule integrationof the continuity

equation14, and the basic 2DPNS algorithm. The matrix iterationconvergence

requirementwas 16UI < lO-5, and peculiaritiesin startingthe 2DPNS solution

were exactlymimicked in generatingthe 2DBL solution. Hence, both numerical

solutionsare displacedaxially from the Blasiussolutionby a negligible

increment. The agreementbetweenthe 2DBL and 2DPNS solutionsis excellentin

both uI and in u2 , see columns 5-6 of Table 2. The transversevelocity

distributionis the sensitivemeasure,sinceit ranges over five digitsof

significanceover 6 (see arrows)and is requiredto implicitlyapproximatea

vanishingnormalderivativeat y/6 = O.

With this confirmation,the principalinterestis efficiency. Table 3

summarizescomparisondata on convergenceof the approximateNewtonalgorithm

Jacobianconstructions. All computationsare done in single precisionusing
a 32-bit word. Using the Blasiussolutionfor {V(x,y)}the 2DBL data of the

second column indicatesuse of [JUU] yields approximatequadraticconvergence

to E(-7) for a scalar equation.Appendingthe direct continuityequationsolution



Table 2

_ Accuracy .Comparisons, Laminar Boundary Layer Test Case, AX = 4.

NODES AXIAL VELOCITY - u1 X lO -1 TRANSVERSE VELOCITY - u 2 X lO 3

2y/106 Blasius 2DBL 2DPNS 2DBL 2DPNSo

0 ?_g=J 099S68 099965 099966 215651 216400
0777] 099950 0(;_945 0_(;_46 215312 216260
0?555 099(;23 099916 0_917 215106 216054
07333 099883 099812 09'9874 214807 215755
07111 0_9824 0_807 0_`;810 214379 21532_
06188 0`;9741 099714 0_720 213778 214731
06666 099622 099584 0_(;591 212949 213908
06_44 089453 0_$401 09(;41-3 211827 212794
06222 0(;9221 099153 099169 210333 211314
05(_$9 098q08 098818 098840 208382 209379
05._77 0(;84_6 098375 098405 205879 206_(;7
0=555 0_;7`;55 097798 0(;7838 202725 203771
05333 097264 097060 097111 i.98825 199903
05111 0 c.63S5 096130 G96195 "1940_7 195159
04EEE 095314 094977 095057 188438 " 189588
04666 093_94 093570 093666 [81822 183013
04_44 092390 C918e0 091994 174215 [75/+32,
04;22 090458 089881 0900 12 165623 1668_8
03_gg 088196 0_7551 087699 156092 15736[
0331_ 055588 084814 085037 165704 146962
03-=55 082621 081841 082019 1345]€; [35835
03333 079293 07e452 078640 122871 124117

03111 075_05 074713 074908 __._;1107_I _ 111928
02181 07156(; 070637 070836 088450 099573
02666 0_7200 066244 066443 086167 087183.
02444 062524 06156_ 06[758 074066 074966
02222 057565 05h622 056808 062411 063274
01599 052339 051455 051630 051374 051536
01_2_ 045546 044732 044887 038712 039737
01480 039421 038696 038832 028913 029649
01270 033(.68 03334U 033457 021443 022085
CICE/ 02(; 160 G28617 02_711 015781 016215

00928 024_51 024483 024568 .__ 011551 _ 011813
00790 0212_E 020858 020931 0083(;3 008715
C067C 018652 017704 017766 006037 0063_7

'. 00566 015245 014953 015005 004316 004510
i 00675 012803 012556 012599 003065 0031_3
!

; 003_ 0 I0676 010472 CI05C@ 00211,6 002250
00327 00_527 008661 008691 O0 1458 _ 001577
00267 001219 _007080 007105 000988 001074

00_I( 005120 i 005700 005728 00064S 000701! 004529 00043600170 004604 :0C4516 000409
00131 003546 !063676 003458 000243 000258
OOG(;7 002_26 0025 76 002583 000136 _ 000146
00067 001126 OOl7gO 0017';6 COG065 00007_;
00041 001130 001108 001112 000025 000040
OOCIS 000525 000515 000517 _ C00005 -.-a=-000016
0 0 0 0 C 0
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Table 3

Newton Algorithm Convergence Summary

Maximum Residual {an_ p+I
v'j+ I

Iteration 2DBL Solution 2DPNS Solution

Index (p), Blasius {V} Computed {V} Original Revised

1 -1.2(-2) -1.2(-2) -I.2(-2) -1.2(-2)

2 1.4(-4) 5.4(-5) 1.4(-4) 1.5(-5)

3 5.8(-7) 1.3(-5) -7.6(-5) -9.4(-5)

4 3.5(-6) 4.2(-5) -5.3(-5)

5 -2.3(-5) 1.8(-5)

6 1.1(-5) 4.7(-5)

7 8.4(-6) 5.1(-5)

8 3.2(-5)

9 5.7(-6)

, ,p+l
for the 2DBL {v_j+l, column 3, the convergence is quadratic only to E(-4) for

the two equation system. This decline in convergence rate for 16Ulmax < 10-4
characterizes all the 2DPNS algorithm solution constructions as well. The

fourth column in Table 3 summarizes convergence of the original PNS algorithm

p+l .p+l p+ldiagonal [JQQ], and solution for {P}j+I and {¢_p+l using {QI}j+I, which is
monotonic and approximately linear for 16UI < 10-4 . The last column gives

these data for the new algorithm construction, equation 64, with [JPU] and

[JCU] omitted (since they cause instability and eventual divergence).

Convergence is quadratic to E(-4), and thereafter is nonmonotonic and sublinear

(although these are extremum residuals occurring at different nodal coordinates

at any iteration).
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The current practicein CMC:3DPNSis 4-5 iterationsper step with conver-

gence set at 16Qlmax_ 10-4. Over this range theconvergence characterof
the old diagonal [jQQ] constructionand the coupledconstructionis nominally

identical. Additionalexaminationswere conductedto assess reasons for the

poor convergencerate below E(-4). Since the action of the penaltyterm is

appliedmodulo a discrete (second-order_approximationto 3/By, the {V}

solutionsgeneratedat ten iterations/stepor more will eventuallyexhibit

"wiggles." The currentpractice is to elementaverageeither {6V} or {V}

when this occurs. In Table 4, column 2 summarizesthe standard test solution

for {V} using the originalalgorithm(for reference),column 3 contains the

revisedalgorithmdata using {V} averaging,and column 4 contains the same

algorithmsolutionwithout {V} or {aV} averaging. Close examinationof the

data in column 4 verifies periodicoccurrencesof local flat spots which will

eventuallygrow into a 2Ay wave. Since a {V} and/or {6V} average is tantamount

to not using the coupled implicitsolutionvector {_QI} as computed,this

operationcould contributeto poor convergence. A numericaltest verifiedthis

to a limited extent_comparecolumn 2 of Table 5 to column 5 of Table 3.

Alternatively,analysisdeterminedthat the "wiggles"in {V} can be traced

back directly to {¢}, hence {S¢}, which if smoothedprior to use in equation

56 would not generate the discretewave. The correctway to obliteratea 2Ay

wave is to use a Shuman-typedigitalfilter,cf., [12, Ch. 4]. As an approx-

, "S -p+l
imation { ¢}j+l was simplyaveraged. The accuracyof the resultantsolution
for {V}, column 5 in Table 4, is nominallyidenticalto the {V}-averaged

solutiondata, exceptdirectlyadjacent to the wall where the averagingremoved

the critical sensitivity. This operationdid improvethe iterationconvergence,

column 3 in Table 5, mostly in returningit towardsmonotonicitybelow

I_Ulmax < I0-a.

The Newton Jacobianfor these tests remainedincomplete,since including

either [JPU] or [J¢U] would destabilizethe algorithm. (Both these terms involve

a discreteapproximationto an axial derivative{QI}', see equations62-63,

to which the PNS penalty algorithm is quite sensitive.) The semi-implicit

evaluationof {QI}',of the form,
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Table 4

2DPNS Algorithm Accuracy Comparisons, Laminar Test Case

NODES JUU,JVV J(l,a) J(l,J) a(l,J) J(l,J)
2Y/lOa PPRESS V Avg. No V Avg. S¢ Avg. S¢ Avg.

o Q'Imp. Q'Imp. Q' Imp. Q' Imp. Q' Sem-lmp.

07999 216400 214784 220248 218018 220856
07777. ' 216260 214620 220080 217866 220733
07555 _ 216054 214402 219993 217643 220549

07333 i 215755 214076 219559 217321 220280
07111 ' 215325 213613 219616 216865 219893

.068.8E _ 214731 212970 218562 216229 219347
06666 213908 212090 " 218138 215356 218586
06444 212794 210907 216796 21_180 217550
06222 211314 209346 _ 215631 212625 216159

J 213703 210605 21633005S_q; 209379 207320 i
05777 2068';7 204738 211318 208022 211964
05555 2037.7l 201506 , 208441 204779 208961
05333 199903 I';7531 !204574 200785 205219
05111 1951c;9 192727 i 200052 195950 200644
04888 189588 187026 ! 194729 190213 195140
04666 183013 180377 187884 183443 188642
04444 175432 172760 180839 1757_0 181157
04_22 1668_:8 1641_84 172176 167138 172609
03€;c;_ 157361 154695 162172 157274 162973
03777 146962 144378 152939 147017 152646
03555 135835 133351 140295 135736 141402
03333 124117 1217_4 129053 123684 128928
03111 111928 10(;7(;4 I1759_ 111736 117288
02_88 099573 097631 102326 0_(;510 104491
0266@ 087183 085485 092874 086025 089834
02444 074966 073566 078062 075789 081177
02222 063274 061926 065551 061870 064622
01_9_ 051536 050403 057151 052053 055122
01722 039737 039301 038727 0350.70 042943
01680 02_649 029607 033067 02_164 028567 --
01270 022085 021952 022816 022300 024686
01087 01_:285 016171 014982 015474 016477
00928 0118_3 011863 014978 011332 011714
00790 0087 15 008671 008086 008553 009200
00_70 006337 0063C2 004866 006070 0066.34
00566 0045 10 004551 006336 00_428 004565
00475 003183 i003253 003669 003071 003123
003<; _ 002250 i 0022_8 000324 0021_7 0020.=8
00327 C01577 _0015"/5 001338 00t660 001242
C0267 001074 1001058 002293 001056 000790
002 1(: 000701 0006(;5 001278 0(3060'; 000633
C0170 000436 000448 000155 000582 000575
00131 000258 "0002 85 000164 000484 000406
00097 0001_,6 000180 000691 C00038 000072
00067 00007'; :000112 000843 -000280 -000305
00041 000040 :000064 ' 000503 -000419 -000526
OGC19 0000 16 000029 0000(;8 -1_00325 -000435
0 0 0 IL 0 0 0
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TABLE 5

NewtonAlgorithmConvergenceSummary

Revised2DPNS Algorithm

MaximumResidual {_U}_+] ,

Semi-lmp]icit{q}"

Avg. {S¢} Avg.
IterationImplicit {QT Implicit{Q}" {S¢}[J] Orig, [J]Index (p) No {V} Avg. {S¢} Avg. Full

l -l.2(-2) -l.2(-2) -l.2(-2) -l.2(-2)

2 -8.0(-5) 2.2(-5) -8.2(-5) 9.4(-5)

3 -5.0(-5) 3.2(-5) -3.3(-5) -4.0(-5)

4 3.6(-5) 3.4(-5) 5.0(-5) -2.8(-6)

5 4.1(-5) 2.2(-5) 4.1(-5)

6 2.6(-5) 7.5(-6) 2.0(-5)

7 1.4(-5) 8.7(-6)

8 -I.I(-5)

9 -l.3(-5)

{QI}j+l _ 1 {QI 2 _ l {6QI 2A----xI }j+l - {QI}j AxI }j+l (66)

is the standardprocedurein CMC:3DPNS. With this simplification,the

parameter"a" in equations62 and 63 is zero. As a consequence,[JCU]

vanishes identicallyand [JPU] can be includedwithout destabilization.

Using {S¢} averaging,the accuracyof this algorithmform is nominally

unchanged,see column 6 in Table 4. The resultantNewton Jacobianis

exact and these resultsare a very modest improvementin monotonicity

of convergence,see column 4 of Table 5. This convergencecharacteris

the closestto the originalalgorithm,recall column 4, Table 3. Of more

significance,insertionof {S¢} averaginginto the originalalgorithm

constructionsignificantlyimprovesconvergence,see column 5 of Table 5.

This operationyields the PNS algorithmas efficientas the direct 2DBL

solution,recall column 3 of Table 3.
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SUMMARYAND CONCLUSIONS

A generalizedcoordinatesform of the penaltyfinite elementalgorithmfor

the 3-dimensionalparabolicNavier-Stokesequationsfor turbulentsubsonicflows

has been derived. This algorithmformulationrequiresonly three distincthyper-

matrices in its formulationand is applicableusing any boundaryfitted coordi-

nate transformationprocedure. The tensormatrix productapproximationto the

Jacobianof the Newton linear algebramatrix statementhas been derived. The

Newton algorithmhas been restructuredto replacethe large sparsematrix solution

procedurewith a grid sweeping procedureusing s-block tridiagonalmatrices where

equals the numberof dependentvariables.

The principalpurposeof the reformulationis to improvesolutioneconomy.

With the restructuredJacobian,solutioneconomyis linearlydependenton the

convergence(.rate)of the Newton algorithm. A seriesof numericalexperiments

were performedto evaluateconvergenceas a functionof Jacobiancompletenessand

off-diagonalcoupling. The resultsof these studiesindicatethat the favorable

Newton quadraticconvergencerate is maintainedto a residuallevel of order lO-4.

Thereafterthe convergencerate uniformlydecreasesto linear for residualcompu-

tationsin the range lO-4 - lO-5 Severalmodificationsto the implicitnessof

the algorithmJacobianand to the overalllinearalgebra statementwere made and

evaluated. Comparisonto exact solutionsindicatesadequateaccuracy is attain-

able for each of the modifications.

The resultsof this study providerequiredguidanceon the appropriateform

for the tensor product3DPNS algorithm. The original form of the algorithm,

employinga diagonalJacobian,retardedevaluationof the Poissonequation

solutions,in particularthe _ solution,and {S_}averagingfor the penaltyterm

yields the best Newton convergenceperformanceand solutionaccuracyfor the

test case. The considerableeffort in constructingand coding the off-diagonal

Jacobianentriesappears unrewarded,based upon thesedata, especially

consideringthe added solutioncosts associatedwith a block versus scalar tri-

diagonalmatrix. This indicationgains considerableimportancein the progres-

sion to turbulentand/or three-dimensionalflows,wherein the Reynoldsstress

tensor will almost double the block size. Based on these data, it appearsthat

the 3DPNS tensor productalgorithmshould employa nominallydiagonal tensor

productJacobianapproximationfor the initial-valuevariables,and should

retard the Poissonequationsolutions,which in themselvescan use a scalar

diagonaltensor productJacobianapproximation. The computationof Reynolds

stresseswould also employ a scalar diagonalform when using an algebraicmodel.

This reconstructionof the 3DPNS algorithmwould fit directly into the present

CMC:3DPNScode. It is suggestedthat this should indeed by the next step.



APPENDIX

Finite Element Algorithm'Standard Hypermatrices

e k:l:
I. One-DimensionalFinite ElementDomainsRI,

_I -I]
[A211] = I i

EA3OOO_f_]''¸ - [-_II-il_ I 11 [A3100] I12 6

-f_1I_il l-IllIll

,-I_)-I'_] I__,)I_',]]
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2
2. Two-Dimensional Quadrilateral Domain Re, k = I:

4 2 I 2

[B200]- I
9 4 2 I

4 2

(sym) 4

-6 -3 -I -2 -6 -2 -i -3

-3 -6 -2 -i -2 -2 -i -i

-I -2 -2 -1 -i -I -2 -2

-2 -I -i -2 -3 -i -2 -6

6 3 1 2 -2 -2 -i -1

3 6 2 1 -2 -6 -3 -I

1 2 2 1 -i -3 -6 -2

[B3010] - I 2 I I 2 -1 -1 -2 -236 2 i i 2 [B3020] - 136 2 2 1 1 -

I 2 2 i 2 6 3 I

I 2 6 3 i 3 6 2

i 2 1 3 6 I I 2 2-2 -1 -i -2 6 2 i 3

I -I -2 -2 -I 2 2 i 1 "'

! -I -2 -6 -3 1 ] 2 2

i -2 -1 -3 -6 3 I 2 6
t._ J ,{,_.. __
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