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SUMMARY

A generalized coordinates form of the penalty finite element algorithm
for the three-dimensional parabolic Navier-Stokes equations for turbulent
subsonic flows has been derived. This algorithm formulation requires only
three distinct hypermatrices, and is applicable using any boundary fitted
coordinate transformation procedure. The tensor matrix product approxima-
tion to the Jacobian of the Newton linear algebra matrix statement has
been derived. The Newton algorithm has been restructured to replace large'
sparse matrix solution procedures with grid sweeping, using w-block
tridiagonal matrices, where o equals the number of dependent variables.
Numerical experiments have been conducted, and the resultant data gives
guidance on potentially preferred tensor product constructions for the

penalty finite element 3DPNS algorithm.



INTRODUCTION

The time-averaged, three dimensional Navier-Stokes equations, for
steady, turbulent, subsonic flow of a compressible, heat conducting fluid,
can be simplified to admit use of an efficient space marching numerical
solution procedure under certain restrictions. Baker, et.al. [1] documents
the derivation of the simplified, so-called “parabolic Navier-Stokes"
equation set using formal ordering arguments. References [2-7] document
application of a penalty, finite numerical solution algorithm for the
parabolic Navier-Stokes equations for a variety of subsonic flow confiqu-
rations, including an embedding within an interaction algorithm to impose
axial pressure gradient feedback. These results have provided a basic
assessment of the accuracy, convergence and versatility aspects of the
finite element penalty algorithm, as well as detailed comparison between

experimental data and prediction for various turbulent flow geometries.

These numerical predictions have been accomplished using the CMC:3DPNS
computer code [8-10] which has evolved and matured principally under
support of this contract. With the theoretical construction well verified,
the requirement to improve efficiency becomes of next importance. The
specific goals of this contract modification were to construct and evaluate
a matrix tensor product factorization of the Newton iteration algorithm and
to-investigate inclusion of an embedded Poisson equation solution procedure.
The results of pertinent analyses are documented in this report.
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SYMBOLS

boundary condition coefficient; parameter
initial value matrix; hypermatrix prefix
constant

hypermatrix prefix; matrix

turbulence model coefficient

Euler Number

function of known argument

finite element matrix; discretized equation system
metric coefficient

stagnation enthalpy; Hilbert space

index

index

Jacobian

finite element basis degree; turbulence kinetic energy
summation index; differential operator
differential operator

number of finite elements spanning RN

unit normal vector; dimension of space

finite element cardinal basis; discrete index
pressure; iteration index

heat flux vector; generalized dependent variable
generalized semi-discrete dependent variable
spatial domain of differential operator
Reynolds Number

source term

finite element assembly operator

velocity vector

Reynolds kinematic stress tensor

convection matrix

Cartesian coordinate system

partial derivative operator

boundary of solution domain R

Kronecker delta; parameter

iteration vector



A mesh measure; increment

™

isotropic dissipation function; parameter

4 transformed coordinate

nj curvilinear coordinate system
K heat conductivity coefficient
A multiplier

v kinematic viscosity

p density

Oij Stqkes stress tensor

z summation

¢ constraint dependent variable
w sublayer damping function

Q solution domain

Superscripts

e finite element reference

h solution approximation

p iteration index -

T matrix transpose

ordinary derivative

Subscripts

a dependent variable index
e finite element reference
i,J,k,2 tensor indices

Jj integration step index

0 reference state

Notation

{1} column matrix

[] square matrix

U union

€ belongs to




PROBLEM STATEMENT

Overview

The basic requirements of a numerical algorithm construction for the
three-dimensional parabolic Navier-Stokes (3DPNS) equation set are accuracy,
geometric versatility and efficiency. Any theoretical basis, e.g., finite
difference, finite volume, finite element, etc., applied to constructing a
3DPNS algorithm ultimately yields the linear algebra statement {F} = {0},
where elements of {F} are strongly nonlinear functions of the dependent
variable set qa(xj). Dependent upon the algorithm designer's decisions,
members of the set g, c€an include density, mean velocity vector, stagnation
enthalapy, turbulent kinetic energy, isotropic dissipation function, pressure
and/or scalar potential fields and six components of the Reynolds stress
tensor. '

For the subject finite element penalty algorithm statement, and the

3DPNS equation set, the functional form of the algebra statement is,

{FI(k, 1,8, Axy, {QI})} = {0} (1)
In equation 1, k is the polynomial degree of the finite element basis
selected to construct the semi-discrete approximation qg(xj) to qa(xj),
X is the penalty function scalar multiplier, 6 is the implicitness factor
of the downstream integration step Ax;, where 6 = % 1is the trapezoidal
rule, and {QI(x;)} is the array of expansion coefficients of qz(xj), evaluated
at the node coordinates of the (spatial) discretization UR; of the 3DPNS
solution domain © = R®x x,. For all & > 0, equation 1 is a nonlinear
algebraic equation system eligible for solution using any of a multitude of
(approximation) procedures. These all can be interpreted within the frame-
work of the basic Newton iteration algorithm matrix solution statement.

a(anig,, oty = - 0l (2)

where p is the iteration index at step xj+], and

@ = @, + eenby (3)




The Jacobian [J] appearing in equation 2, is by definition the square matrix,

" . 3{FI} '
fatiarn)] = 20 (4)

where both I and J range 1 -~ 16,

This contractual project phase initiated evaluation of decisions made in

construction of equations 1-4, as they principally affect algorithm
accuracy and efficiency.

Parabolic Navier-Stokes Equations

The three-dimensional parabolic Navier-Stokes (3DPNS) equations are a
simplification of the steady, three-dimensional time-averaged Navier-Stokes
equations, which in Cartesian tensor conservation form are

L(p) = 537%“5

-9 e e s -
L{pH) = % [pHuj " U045 + pH u; uiod; + qj] 0 (7)

L(pk) %;— [pu k + (C E nu1 j- ”dij)ﬁigJ

J
aui
+ pu{ug 3. tpe=0 (8)
J
5 3 e Bui
4 -~ 1 -ﬁ‘v_
L(pe) = 5?3 [DUJE + Ceg PU; Jax } CEpu1uJ k ox
2
+ 025 =0 (9)




In equations 5-9 the usual superscript bar notation denoting time-averaged
quantities [11] has been deleted for clarity. The time-averaged dependent
variables are density (p), mean momentum vector (pui), pressure (p) and
stagnation enthalpy (H). Further, 61j denotes the Kronecker delta, and the

Stoke's stress tensor (0,.) and heat flux vector (q;) are defined as,

a..
1]

T U2 ) ,
%ij = Re [Eij P EkkJ (10)
= _,oH

where p and K are laminar viscosity and heat conductivity respectively.

E.. is the symmetric mean flow strain rate tensor.

ij
Bu, auj-
Eiy o, 7 3. (12)

J

Finally, 'ui“j is the symmetric Reynolds stress tensor with trace equal

to 2k, where k is the turbulent kinetic energy. For present purposes,

—_—

uiuj is assumed correlated in terms of k, uj and g, the isotropic dissipa-

tion function, in the form,

07 = C.KS LS C,C.K E
Uity RS F RTINS § E Y

ikEk; (13)

wﬁere the Ca, 1 < a < 4, are known constants [1].

The parabolic approximation to the steady flow Navier-Stokes set, equations
5-13, is generated by assuming a principal direction of the flow persists,
say parallel to the (curvi-linear) coordinate x;. Assuming the corresponding
mean velocity component u; is of order unity, i.e., 0(1), and that the other

two orthogonal components u, are smaller, say of 0(8), then for modest

L
density variation the continuity equation 1 confirms that for 3/3x; = 0(1),
then a/axz = 0(8™').Proceeding through the analysis details [12] confirms

that the 0(1) 3DPNS equation set is
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+ puiu, ?xz +pe =0 (18)
; - 3u1
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axj [ J_ ax2 ee j2 xj £ %k ?xz
+ C;paz/k =0 (19)

'In equations 14-19 the tensor index summation convention is 1 5»(i,j) <3

and 2 < (k, ¢) < 3. The Reynolds stress tensor constitutive equation 13

also becomes considerably simplified under the ordering analysis. For example,
in rectangular Cartesian coordinates, and retaining the first two orders of
terms yields equation 20. An equation of state p = p(p,H) completes the basic
3DPNS statement.
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3DPNS Equation Set Completion

Equations 14-20 do not represent a well-posed, initial-boundary value
problem statement for the dependent variable set. In particular, equation
14 is the sole definition for Up » yielding an underdetermined system. The
finite element penalty algorithm construction of Baker [1] yields a well-
posed problem statement by inclusion of both 0(8) transverse momentum
_ equations, definition of an auxiliary harmonic function for a penalty
constraint, and definition of complementary and particular solutions to a
pressure Poisson equation formed from equation 16.

The derived pressure Poisson equation is,
oL (pu

) : [ |
L(p) “‘&—L = axaax pupug 1= 0 (21)
L 27k
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the solution to which is defined as

Plx;) = p(x), x1) + Pp(xgs x1) (22)

The complementary pressure pc(xz, x1) is the solution to the homogeneous
form of equation 21 with exterior flow boundary conditions [1]. The
particular pressure is computed throughout the 3DPNS soluticn from equation
21, and added in a delayed manner into equation 22, used in the u; momentum
equation solution, yielding a muiti-pass interaction algorithm.

The retained 0(&§) transverse momentum equation set is

{ okg} =0 (23)

$ - _9_ 1 . 8
L (pug) - axj [puzujJ ox .

The auxiliary harmonic variable ¢ is defined as the solution to a Poisson
equation, driven by the continuity equation 13, in the form

L(s)

n
Qo>
L?
1
-
©
<
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1
o
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ey
o

Finite Element Penalty Algorithm

As a consequence of the 3DPNS equation set completion, equations 15,
16423, 17+ 19, 21 and 24, define a well-posed, initial-boundary value
statement for the dependent variable set qa(xj) -+ {q(xj)} = {pul,puﬁ,pH,
ok, pe, p_, p_, ¢}. The equation of state, p = p(p,H), and equation 20 are

C P
algebraic definitions for the remaining seven members {p, u{ui .
Therefore, the first nine members of {g(x.)} are eligible for constraint

J
on the solution domain boundary, 302 = 3R x x,, by a Tinear combination of

Dirichlet and Neumann boundary conditions of the form

19) =at g + ay 0+ a% =0 (25)

10



In equation 25, the a} are defined to enforce the appropriate constraint

for each variable, c.f., Baker [2, 12]. Since the remaining seven members
of {q(xj)} are defined by algebraic equations, no boundary conditions are
appropriate. Finally, the first six members of {q(xj)} are required defined
on the initial solution plane, Qo = R%* x x1(0), by an appropriate initial

conditTon,{qo(xz, x,(0))}.

The complete derivation of the finite element penalty constraint
numerical solution algorithm is given in [1, ‘12] Briefly, the semi-
discrete approximation for each member of the set g;(x .) is formed by the
union of elemental approximations q (x ) as,

h e
) = .) = . 26
9, (x;) = q (x;) U a5 (x5) | (26)
In turn, each elemental semi-discrete approximation, valid on the
representative finite element domain Qe = RZ X X1, is formed as an expansion
on the cardinal basis {Nk(xl)}’ the members of which are (typically)
polynominals complete to degree k, in the form

95 (x;5)

(N O, 13T 1QI(xa) ), (27)

tHi

In equation 27, {*} denotes a column matrix, superscript T its transpose,
subscript e denotes pertaining to R2 , and the elements of {QI} are the
eva]uatlon of the semi-discrete appr0x1maf1on at the nodal coord1nates of Rg.

A basic requirement in any algorithm construction is a formal statement
regarding constraint on the error formed by employing the semi-discrete
approximation for the differential equation set. The finite element
algorithm construction requires the semi-discrete approximation error to
be orthogonal to the basis employed to construct qZ(xj). For ‘all members

of {qh} except ug , the resultant error constraint statement is,

J N (x)} L(qh)d% + BJ{Nk(x )12(qh)dx = (0} (28)
R? oR

IR



where B is a scalar multiplier selected to achieve cancellation of the

middle term in equation 25. The error extremization statement for the

members ug of {qh} is,
(
J{Nk(xl)} (L) + ] eR 8|0, (x, 1a(ul)ex
R? : 3R
B{Nk} he >
Al —p— L(¢7)dx = {0} (29)
%

R2

where X is an arbitrary parameter modifying the penalty term which
constrains the error extremization by the continuity equation (error).

Equations 28-29 define the finite element penalty algorithm semi-discrete
error constraint statement for the 3DPNS equation set. For the non-initial-
valued dependent variables, equation 28 yields the linear algebra statement
{FI} = {0} , recall equation 1. For the initial-valued variables, equations
28-29 yield a coupled ordinary differential equation set,

[A] gégfl— + {8(Q1)} = {0} (39)

which is transformed to a linear algebra statement using a Taylor series,
for example,

(FI) = {Q1)y,y - QD) = Axy 1QID5, 0+ «oe = {0) (31)

where superscript prime denotes the ordinary derivative and 6 > 0 implies
an implicit statement since equation 30 is quite nonlinear.

Hence, the final fully discrete approximation error constraint statement
is the nonlinear algebraic equation set,

{FI(k, X, 8, &x1, {QI})} = {0} (32)

where 1 < I < 16, see equation 1. The Newton algorithm solution for

equation 32 1is given in equations 2-4.

12




DISCUSSION AND RESULTS

Generalized Coordinates

A basic requirement for a 3DPNS algorithm is geometric versatility, such
that the discretization of the transverse plane solution domain R2 can be
efficiently embedded within a boundary comprised of the union of select
aerodynamic surfaces and freestream interfaces. The term "generalized
coordinates" has gained acceptance in describing an algorithm construction
suitable for use with a regularizing, boundary fitted coordinate transfor-
mation. This construction also impacts directly on the efficiency of an
implicit algorithm, since it usually facilitates factorization of the
lTinear algebra statement Jacobian, recall eduation 2. An objective of the
current project is to construct and evaluate a matrix tensor product
approximation to the Newton Jacobian of the finite element 3DPNS algorithm [8].

The required step is to derive the generalized coordinates form of the
finite element penality algorithm, equations 28-29. A multitude of procedures
are available to generate regularizing trahsformations, c.f., [13], and each
may be viewed as generating an approximation to the mapping,

X5 = xi(nj) (33)

at a finite number of coordinate triples on the domain @ = RZ x x;. For the
space-marched 3DPNS equation set, equation 33 may be conveniently decomposed
into an xi-oriented grid-stretching transformation, x;= xl(gj), and a
regularizing transformation on R2 mapping the boundaries 3R onto coordinate
surfaces of nj J =1, 2. Denote the generated set of coordinate pairs on
RZ as {XI} , I = 2, 3. The number of entries in {XI} equals twice the mesh
characterization of the discretization UR% of R2. (For example, for a 41X41
mesh, there are 2(41)(41) = 3362 entries in {XI}.) On any (each) finite

element domain Rg, the specific form of equation 33 is,

x; = N (R)TxDy (34)

for X5 € Rg. In equation 34, the elements of {XI}e are the appropriate
members of {XI}, and the interpolation basis {Nk(ﬁ)} is (potentially)
identical to the approximation subspace for q?, equation 27.

13



Equation 34 is of general utility since the elements of {Nk(ﬁ) are well
known for'k> 1, using either triangular or quadrilateral shaped finite
elements RZ, with or without curved sides. The algorithm requirement is to
transform the derivatives 9/9x, and d9/3x,, see equations 15-19, 21-24, as
they appear in the penalty algorithm statement, equations 28-29. A grid
stretching parallel to the x, coordinate direction introduces additional
derivatives in Fhe X, Pplane, upon transformation to the ;j coordinate system
of the form [8].

3 d 3 9 = 3

< 2 = - 9
it h2 % hsy 3% Y hg %, (35)

Therefore, the general form of the initial-valued partial differential
equations 15, 16423, 17-19, of the 3DPNS set is

= 9 1 0 ) -
L(qa) Ta [Ulan + E;EA[(1—h2)qau2 T, } ts = 0 (36)

Table 1 Tists q , 7 ,, and s for 1 < a < 6 in equation 36, and 2 < & < 3.

Table 1. Variables and Parameters in Equation 36

83 q(l TQQ, Sa
1| ou putuy - oy, - hyp 9p_
il ac
2 | pu, puTuy - 02 + pcS;;2 0
3 1 pus pusU, - O3 p63£ 0
4 H Hu? - oH .9
P Py = x axg ax_ |Yi% tou 9ig
L
5 k = f - Ll — o L4
p Ce 2 puu, usz] axj puTuy 9 + pe
6 | et C. & Py e ¢! puruy & 1y g2 pel
€8 TR X ek, T e kO
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The generalized coordinates construction requires transformation of the
planar divergence operator a/axz, when equation 36 is inserted into equation

28. Using a Green-Gauss form of the divergence theorem on the second term
in equation 36, yields

> h h h >
{Nk} L[qZ]dx + B[{Nk}l(qg)do = [ {N}[%jf[ulan ts, ] dx
R? aR R?

h h h
+ {N}[(l-h&)qau2 + Tal] n, do

oR

h
aq Bnk ~ a
+ B{ {N} [a? qg + a% ﬁﬁ%_ 57; n, + a3 do (37)
oR

The evaluation of equation 37 is accomplished by performing the integrals
on an element-by-element basis, and assembling the resultant contributions
into {FI} using the matrix assembly operator S,, c.f., [12, Ch. 2]. Since
the elements of {Nk(ﬁ)} are known functions of ;, the only requirement is
evaluation of Bnk/axz on a generic finite element domain RZ. From equation

34, the 2X2 square matrix defining the Jacobian of the forward transformation
is

15



JOR . 2
[, = G, - [Emk]e (38)

Thus, the elements of the inverse transformation Jacobian are,

2 e det Je

an

kl _ -1 _ 1
[W:I - [\J]e - [C]e (39)
where [C] is the 2X2 transformed cofactor matrix of [J]e, the elements of
which are algebraic functions of Ny and {XI}e. The differential element dx

in equation 37 becomes

dx = det J, dn (40)

Finally, it is convenient to define the contravariant components of the

convection velocity semi-discrete approximation GE on Rg as

ui = det J, {5;§J (1-hy)ug = (1-hg) (I, ug (41)
e

With equations 38-41, and recasting evaluation of equation 37 as the
assembly of integrals over URZ , the generalized coordinates form of the
finite element algorithm statement, equation 28, becomes

h

a]d? + B {NK(E)}z(thdo

{N (n)} L[q o

R2 aR

= s, [ det g, (N} (N} [%E wgr, + {sx}e]dﬁ
R?
e

16



T 3 T h
{UBARK}e {N} W {N} {N} {QI}e dn

R2

T d T >
J {ETAKL}e {N} 55; {N} {N} {TAUIL}e dn
Re

“+

K {N} [a} qs + a3 ] det Je do

+

ay [o-ny woT ma oo’ «n
2 e

0T TAUILY, A det Jé}dc (42)

In writing equation 42, it has been assumed the only variable possessing
a constrained normal derivative boundary condition is stagnation enthalpy.
Hence, the fourth term contains only qi,'and the normal derivative term in
equation 25 is cancelled by the corresponsing term in the third integral in
equation 38 by defining B = k, see Table 1. A second assumption is that
det Je is adequately represented as an elemental scalar, which is a commission
of interpolation error (only) on a sufficiently refined mesh. The elements
of the direction cosine matrix {ETAKI}e are defined by the interpolation.

an
| T N (ETAKLY (43)
k det J,

17



For example, defining k = 1 in equation 43, for the bilinear tensor
product basis on straight-sided quadrilaterals, numbering nodes counter
clockwise, and defining the elements of the nodal array {XI}e as {YJ,.24,
1 <J <4}, , the four arrays Z{ETAKL}e are, c.f., [12, Ch. 8].

p N ) ( 3 ¢ 3
24-71 Y1-Y4 71-72 Y2-Y1
23-72 Y2-Y3 21-72 Y2-v1
2 {ETAKL} = -
e |32 { | V2-¥3 |, | 74-23 |, | ¥3-v4 | (40)
24-71 Y1-v4 24-173 Y3-v4
L (2,2) ) 1 (2,3) ) | (3,2) ] 1 (3,3)
e [ e e

The indices in the parenthesis in equation 44 denote (K, L). Finally, the
matrix elements of {UBARK}e are defined by the interpolation.

_e T
U, = {N.}" {UBARK}, (45)

Proceeding through the algebra yields

{UBARK}, = {ETAKLY, (N}T {UL} (46)

Since the evaluation of equation 46 is at nodes, the elements of {Nk} reduce
to the Kronecker delta; hence, {Nk}T{UL}e simply selects the correct nodal
value out of the elemental arrays {UL}e , L =2, 3.

In equations 42-46, the indices K, L are tensor summation indices, while I
denotes the appropriate member of {qz}. Every matrix denoted by a subscript
¢ in equation 42 is independent of the A coordinate system spanning R?, hence
can be extracted outside the integral. The expressions remaining within the
integrand are polynomials on ﬁ , for all definitions of completeness k of the
semi-discrete approximation, recall equations 26-27. The order of {Nk} depends
upon k, as do all the integrels in equation 42, and each is readily evaluated
using numerical quadrature. The basic structure of equation 42 is thus defined,
using a standardized hypermatrix nomenclature [12], as

18




hl » h
{Nk} L (qa]dx + B {Nk} 2 [qa]dc

R2 oR
. d
=S, [ det J, [8200] —S{UIQI}, + det J, [B200] (SI}g
- [{UBARK}E [B30KO] - [l-hEJ iy det J {UK}Z [A3000]]{Ql}e
- [{ETAKL}Z [830k0] - i, det J_ [A200] {TAUIL},

+ K s14 det J, [a?[AZOO] {1y, + a; {A]O}] = {0} (47)

Note that equation 47 is in the form of equation 30, with the definition
[A] = Se[det Je[8200]]. The generalized coordinates finite element penalty
algorithm involves definition of only three distinct standard matrices,
[B200] and [B30KO], K = 2, 3, on Ré. These are independent of Ré and depend
only on the degree k of the semi-discrete approximation. In addition, there
are the three standard matrices [A200]1, [A3000] and {A10}, defined on the
boundary of R2, hence evaluated on a one-dimensional element Ré. In the
second and third lines of equation 47, the terms involving [A --] are the
residuals from use of the Green-Gauss theorem, see equation 37. The terms in
the fourth line result from the heat convection boundary condition for
stagnation enthalpy. The tensor indices range 2 5_(K, L) < 3, the subscript
k takes on the value of K, n, and A _are unit normal vectors to R?, and
1 <1 < 16 denotes the ordered members of the dependent variable array.
Finally, det Jo is the average value on R% of the determinant of the transfor-
mation Jacobian, equation 38, and {ETAKL}e and {UBARK}e are element dependent
matrices defined in equations 43-46. The Appendix lists the defined matrices
[A .+ ] and [B. -] for k = 1 in equation 27.

19



Tensor Matrix Product Jacobian

The form of equation 47 is well suited to formation of a tensor (outer)
matrix product approximation to the Newton iteration algorithm Jacobian,
see equations 2 -and 4, upon definition and use of a tensor product cardinal
basis {N;}, equation 34, on quadrilateral finite element domains Rg (which
could be curved-sided, k > 1). In this instance, the Newton algorithm
Jacobian is approximated by the tensor matrix product construction,

[a(1Q11) 1= [9,] @ [J3] (48)
where @ denotes the outer product [14]. Equation 2 then becomes of the form
(2] ® [J3] (8QI} = - {FI} (49)

Making the definition [J3] {8QI} =  {&PI}, equation 49 is solved by sweeping
the mesh parallel to n, , to determine {8PI}, and then sweeping the mesh
parallel to n3 to complete the solution, i.e.,

[35] (6P1}, = - (I,

m

[03] {8Q1}, = ({6PI}, (50)

The attraction of the approximate solution statement, equation 50, is
replacement of the large sparse matrix [J], equation 4, by two block

tri- or penta-diagonal matrices [Jn]’ with the corresponding significant
reduction in computer storage and LU decomposition computer CPU time.

The detraction of the statement is degradation of the convergence rate
associated with the exact Newton algorithm statement. Of course, for the
16-dependent variable 3DPNS equation set it is impossible to construct and
use the exact Jacobian. Hence, the trade-off is degree of approximation
versus associated cost. The critical measure is convergencelrate since
this determines the number of passes through the linear algebra statement.

Study Problem Statement

The tensor matrix product approximation to the 3DPNS Newton Algorithm
Jacobian is formed by evaluation of the appropriate integrals in 3{FI}/5{QJ}
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on a one-dimensional domain Ré. The CMC:3DPNS code [10] was reorganized to
permit construction of a one-dimensional Jacobian, independent of the sub-
routines used to generate {FI}. The basic issue is convergence, and the
study problem is solution of the 2DPNS equations for laminar and/or turbulent
flow. The code was indexed to permit use of the original algorithm formula-
tion, as well as several variants of the tensor product construction. The
2DPNS algorithm construction for turbulent flow using the k-e closure with

a Reynolds stress algebraic model was established, however, the detailed
discussion is limited to the equation system for laminar isoenargetic flow.

The governing 2DPNS differential equation system, see equation 36, for
{q} = {u, v, p, ¢}, is -

_i_ ' 3_ _\) B_U = .
L(u) = ™ (uu) + p' + 55 [vu re ay} 0 (51)
Seyy = & 3_ P o_ v v
L%(v) ™ (uv) + 5y [vv t Re ay] 0 (52)
3 1{13p v JAv 1 3 [oav)] . '
L) =5y oy etV oy Re 3y [”S?J] =0 (53)
2
L =M - ﬂ _a_v =0 54
0 =22 - % W (54)
. v . 1.dp . . .
In equation 51, p' = — is an input parameter (corresponding to the

p dx
pc(xl, xg) solution, equations 21-22, for 3DPNS). Inserting equations 51-54

into the finite element penalty algorithm, equations 28-29, see equation 42,
proceeding through the algebra, equation 47, and inserting the results for
uh and vh into the trapezoidal rule (6=)) form of equation 31, equation 32

becomes the set.

ft

{F1} = g{FU}e

1h P T P .
5| 3000, + Ul [asoool[w,, - wiy]

-+

AX T ' 1 T {
5 {V}e [A3001] {U}e + Ae{P }e + K;{NU} [A3011]{U}J (55)
J+1,3

21



s{% R UL uj}z [A3000] [{V}§+] - {V}j]

{F2} = g {FV}e S elUs4

+

Ax T 1
_?[{V}e [A3001]{V}e + 5 [A201]{P}e

] T -
+ — {NU}_ [A3011]{V}
Be € ¢ 541, ;
( 3\
+ C (Ul [A201] {S¢} (56)
¢l € ejj+1

- _ 1 - 1 T
{F3} = g {FP}e = S{EZEEA2]1]{P}E + EU—-{U}Q [A3010] {VP}e

]
EuA
e

+

.
{vi, [A3011] {V}eJ (57)
j+1

{F4} = g{F¢}e = 2{52—[A211] {¢}e + 4, [AZOO]{UP}e + [A201] {v}?J (58)
L j+1

The newly defined standard matrices [A- -] are also listed in the Appendix.
Further, det Je = Ae’ the measure of Ré, and its occurrence has been cleared
throughout equations 55-58, such that [A---Jare integer arrays with a common
divisor. The continuity equation has been explicitly employed to clear extra
terms in equations 55-56, {-}§+] denotes evaluation with the current jterate
at X5, {'}j denotes the converged solution at the previous step (xj),

(54,5
. . . P .
and [ ]j+1 denotes evaluation with { }j+1' The arrays {UP}e and {\c’P}e contain

indicates evaluation with both {-}§+] and {-}j, followed by addition,

a finite difference approximation for H%;{U}e and H%T {V},, evaluated at

X The elements of {NU}e are v/Re, where Re is the Reynolds number, Eu is

Nk
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the Euler number, and {P'}e contains % %g.

The Tast term in equation 56 is the continuity constraint penalty term,
the selected form of the A- modified integral in equation 29. C¢ is a constant
of order unity, and [Uje is a diagonal matrix with elements taken from {U}eb
in the same order. (This multiplier improves the resolution of {V} in the

Tower reaches of the boundary layer. The penalty term dependent variable is
{S¢}e, defined as the sum of the previous solutions to equation 58 at step

xj+], i.e.,

p+l p p+l
p [ p+1)
= {S¢}j+] + L{(b}j_,_'l + {6¢}j+]
J
-1 [ p- p )
= {Sd’}j_ﬂ + {¢}J+] + {&b}jﬂ
( ) p+1)
+ {¢}j+1 + {6¢}j+] , ete. (59)
{ J

1

Furthermore, {S¢}j+1 = {S¢}j’ which is the identification as well for the

first estimate of the dependent variable set, i.e., {QI}}+] = {Ql}j. This
definition of {S¢}, as the penalty variable, is a considerable modification
of the orginal algorithm construction in CMC:3DPNS, to permit solution for

{8¢} within equation 2, rather than a separate Poisson solution for {¢}.

Equations 55-59 constitute the linear algebra spetification of the 2DPNS
algorithm. The Newton algorithm Jacobian matrices are derived from the
definition, equation 4, using equations 55-58., They are identical to the

factor [Jz] of the tensor product approximation for the 3DPNS statement,
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equation 50. Recalling that [J] = Se[J]e, the elemental components of the
4-block, tridiagonal Jacobian £J,] are:’

24

[JUU]e

fouvl,

four],

[ove],

[JVV]e

[JVU]e
[JVP]e

[ave],

[opP],
[opu],
[JPV]e

[apo],

= 8,{U}] [A3000] + 2% [{V}Z [A3001] + - )] [A3o11]]

f

]

e
AX oy T
—Z—{U}e [A3100]

(o]
(o] | (60)

1 p T
S, {Uj+] + U b, [A3000]

; ég—[{v}l [[A3001] + [A3100] + %; TN [A30]1]]

] p T
?Ae {Vj+1 - Vj}eA[A3OOO]

Ae
75 [A201]

c, (Ul [h201] | | (61)

1
— [A211]
pAe

1 T
T {VP}e [A3010]

EuAe

-{%E {U}Z [A3010] + —— {V}Z [[ABO]]] + [A3110]]

{o] (62)




L300 = - [A211)
[J¢U]e = al, [A200]
Loev], = [A201]
LJ9P], = fo] (63)

In equations 60-63 all evaluations are made using {- }J+] unless otherwise
noted. The parameter "a" in equations 62-63 denotes the fraction of {QI}p

used in the finite difference approximation for dc{QI} at xJ 4

Numerical Results

Numerical experiments have been executed to evaluate the 2DPNS algorithm
using various approximations to the Newton algorithm Jacobian, equations
60-63. The exact construction is

- -

[JUU]e [JUV]e 0 0

P

[avul, [va]é Lovel, [avel,
p+l _ p
Se {sQryiyy = - {FI}5+1 (64)
[opul, [apvl, [oPPl, 0O

[oeu], [ovl, o  [agel,

j+1
For reference, both the 2D and 3D algorithm constructions currently oper-
ational in the CMC:3DPNS code approximate equation 64 by its diagonal
entries only. This decouples the dependent variable set solution in the
nondiagonal terms premultiplied by Ax, eauations 60-63, but retains the
Ax-coupling through convection, pressure gradient and viscous-turbulent
effects. Further, the original algorithm Poisson equation solutions are on
{p} and {¢}, rather than {&P} and {8¢}, and both are computed using the most

recent solutions {U}?I}, {V}?+ , etc., rather than {QI} see equation 2.

j+1’

The 2D algorithm construction for solution of {P} and {¢} was rearranged
and the code modified to permit PNS solutions using various approximations
to [J]. The nearest equivalent to the original algorithm construction is,
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r R4
[auu]
[avv]
p+l _
[J¢¢]J
- J+1
where {FP} and {F¢} are now evaluated using {QI}p . Defining the penalty

variable as {S¢}, see equations 56 and 59, reproduced the original algorithm
solution data to within negligible differences. The (finally) selected

lTaminar flow standard test case used a geometrically nonuniform, unstretched
grid of M=56 elements spanning 38,. The initialization of {U} employed the
Blasius solution, and the boundary layer thickness doubled over the integra-

tion length Ax = 4, achieved in nominally 20 nonuniform integration steps Ax
at Re = 3.2x10°.

Table 2 summarizes data confirming the modified 2DPNS algorithm can
generate an acceptably accurate solution on the M=56 mesh, with nodal coor-
dinates as listed in column 1. Columns 2-4 compare the axial velocity
profiles of the Blasius solution, the direct boundary layer (2DBL) solution
using [JUU] and a direct trapezoidal rule integration of the continuity
equation 14, and the basic 2DPNS algorithm. The matrix iteration convergence
requirement was |8U| < 10'5, and peculiarities in starting the 2DPNS solution
were exactly mimicked in generating the 2DBL solution. Hence, both numerical
solutions are displaced axially from the Blasius solution by a negligible
increment. The agreement between the 2DBL and ZDPNS solutions is excellent in
both Uy and in u, éee columns 5-6 of Table 2. The transverse velocity
distribution is the sensitive measure,since it ranges over five digits of
significance over § (see arrows) and is required to implicitly approximate a
vanishing normal derivative at y/§ = 0.

With this confirmation, the principal interest is efficiency. Table 3
summarizes comparison data on convergence of the approximate Newton algorithm
Jacobian constructions. All computations are done in single precision using
a 32-bit word. Using the Blasius solution for {V(x,y)} the 2DBL data of the
second column indicates use of [Juu] yields approximate quadratic convergence
to E(-7) for a scalar equation. Appending the direct continuity equation solution
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Table 2

Accuracy Comparisons, Laminar Boundary Layer Test Case, AX = 4.

NODES AXIAL VELOCITY - uq X 1071 TRANSVERSE VELOCITY - u, X 103
2y/108, Blasius 2DBL 2DPNS 2DBL 2DPNS
07896 069568 099965 099966 215451 216400
1711 099950 066845 065546 215312 216260
07555 069623 099916 0665117 215106 216054
07333 059883 099872 0958174 2148017 2157155
07111 069824 0ss8017 05810 2143179 2153256
06¢€88 0691741 099714 065720 2131718 214731
06666 099622 099584 066561 212949 213908
06f44 055453 0SS401 095413 2118217 212164
06222 069221 099153 065169 210333 211314
0566S 098608 096818 058840 208382 2093179
05111 058454 0983175 098405 205819 20€E67
05€5% 057555 097798 067838 | 202725 __, 203711
05333 097264 097060 097111 168825 199503
05111 0S€&365 096130 €96195 194081 195159
04EE€EE 055314 094917 065057 188438 1865588
04¢€6¢€ 063564 0935170 093666 181822 183013
04444 062390 €CS18€0 091994 174215 175432
04222 090458 089881 0s0012 165623 l668¢8
03556 088196 087551 081699 156092 157361
031711 0£5588 0648 14 085037 1457C4 146962
03£5¢ 082621 081841 082019 13451S 13:835
g;i?i 079293 078452 8;8640 122871 124117

075¢05 074713 4608 . 1107¢€1 111928
02¢€8¢ 071566 070637 070836 |~ 058450 . 059573
0266¢ 0€7200 066244 066443 086147 087183
02444 0€2524 0615¢2 061758 074066 0749¢6
02222 057565 056622 056808 062411 063214
0159S 052239 051455 051630 051374 051536
0112z 045546 044732 G44887 038712 039737
01480 039421 038666 038832 028913 025649
012170 033668 033340 033451 021443 022085
gégsg 025160 c28617 ggi;é; o157¢€1 01€2¢€5

024651 024483 011551 ' 0118€3
00750 021Z€¢€ 020858 020931 |7 Qo833 . 008715
coec 018652 017704 0l17¢6 00€037 006327
005¢¢ 015245 014953 015005 004316 004510
00475 012803 012556 012569 003045 003183
003s¢ 0106176 0104172 closce 0021156 002250
00327 008E27 008661 008691 | _ oor4ss —, 0015177
00267 007219 007080 007105 000988 001074
00z1¢ 005620 | 005708 00=1728 000645 000701
00170 004604 | 0C4514 004525 000405 000436
00131 003546 | 063476 0034 €8 000243 000258
00CS 7 002¢€26 002574 002583 | | 000124 - 00CL4é
00061 001€2¢ 00170 001756 C0C065 000075
00C4 1 001130 001108 00ll12 000025 000040
00C1S 000525 000515 000517 | =™ (00005 —w 000016
0 0 0 0 c 0
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Table 3

Newton Algorithm Convergence Summary

Maximum Residual {5U}§I%

Iteration 2DBL Solution 20PNS Solution

Index (p),| Blasius {V} Computed {V} Original Revised
1 -1.2(-2) -1.2(-2) -1.2(-2) -1.2(-2)
2 1.4(-4) 5.4(-5) - 1.4(-4) 1.5(-5)
3 5.8(-7) 1.3(-5) -7.6(-5) -9.4(-5)
4 3.5(-6) 4.2(-5) -5.3(-5)
5 -2.3(-5) 1.8(-5)
6 1.1(-5) 4.7(-5)
7 8.4(-6) 5.1(-5)
8 3.2(-5)
! 5.7(-6)

for the 2DBL {V}gi}, column 3, the convergence is quadratic only to E(-4) for
the two equation system. This decline in convergence rate for ]6U]max <1074
characterizes all the 2DPNS algorithm solution constructions as well. The
fourth column in Table 3 summarizes convergence of the original PNS algorithm
[d1agona1 [JQq]), and solution for {P}p+] and {¢}p+1 using {QI}p +° which is
monotonic and approximately linear for |sU| < 10-4. The last co1umn gives
these data for the new algorithm construction, equation 64, with [JPU] and
[J9U] omitted (since they cause instability and eventual divergence).
Convergence is quadratic to E(-4), and thereafter is nonmonotonic and sublinear
(although these are extremum residuals occurring at different nodal coordinates
at any iteration).
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The current practice in CMC:3DPNS is 4-5 iterations per step with conver-
gence set at IGQImax < 1074, Over this range the convergence character of
the old diagonal [JQQ] construction and the coupled construction is nominally
identical. Additional examinations were conducted to assess reasons for the
poor convergence rate below E(-4). Since the action of the penalty term is
applied modulo a discrete (second-order) approximation to 3/3y, the {V}
solutions generated at ten iterations/step or more will eventually exhibit
"wiggles." The current practice is to element average either {8V} or {V}
when this occurs. In Table 4, column 2 summarizes the standard test solution
for {V} using the original algorithm (for reference), column 3 contains the
revised algorithm data using {V} averaging, and column 4 contains the same
algorithm solution without {V} or {8V} averaging. Close examination of the
data in column 4 verifies periodic occurrences of local flat spots which will
eventually grow into a 2Ay wave. Since a {V} and/or {8V} average is tantamount
to not using the coupled implicit solution vector {8QI} as computed, this
operation could contribute to poor convergence. A numerical test verified this
to a Timited extent, compare column 2 of Table 5 to column 5 of Table 3.

Alternatively, analysis determined that the "wiggles" in {V} can be traced
back directly to {¢}, hence {S¢}, which if smoothed prior to use in equation
56 would not generate the discrete wave. The correct way to obliterate a 2Ay
wave is to use a Shuman-type digital filter, cf., [12, Ch. 4]. As an approx-
imation, {S¢}§:} was simply averaged. The accuracy of the resultant solution
for {V}, column 5 in Table 4, is nominally identical to the {V}-averaged
solution data, except directly adjacent to the wall where the averaging removed
the critical sensitivity. This operation did improve the iteration convergence,
column 3 in Table 5, mostly in returning it towards monotonicity below

-4
IGUImax <107,

The Newton Jacobian for these tests remained incomplete, since including
either [JPU] or [J¢U] would destabilize the algorithm. (Both these terms involve
a discrete approximation to an axial derivative {QI}”, see equations 62-63,
to which the PNS penalty algorithm is quite sensitive.) The semi-implicit
evaluation of {QI}”, of the form,
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Table 4

2DPNS Algorithm Accuracy Comparisons, Laminar Test Case

30

NODES JUU,Jvv J(I,d) J(1,9) J(1,J) J(I,J)
2y/106 PPRESS V Avg. No V Avg. S¢ Avg. S¢ Avg.
°1 Q'Imp. Q' Imp. Q' Imp. Q' Imp. Q' Sem-Imp.
07999 | 216400 214784 220248 218018 220856
071771 | 216260 214629 220080 217866 220733
07555 | 2160%4 214402 219993 217643 220549
07333 || 215755 2140176 219559 217321 220280
07111 |: 21532¢ 213613 215416 21€8¢5 215893
06E8E | 214731 212970 218562 21€229 219347
06666 213908 212090 218138 2153%¢ 218586
06444 2121754 210907 216796 214180 217550
06222 211314 209346 | . 215631 212625 21615%9
0555S | 206379 207320 |! 213703 210605 214330
057177 | 20e857 204738 || 211318 208022 2119¢4
05555 | 203771 201506 || 208441 204719 208961
' 05333 | 199903 157531 || 204574 200785 205219
05111 195169 152721 |1 200052 1655¢0 200644
0486¢ 185588 187026 | 154729 160213 195140
04666 183013 180377 187884 183443 188642
04444 175432 1727¢€0 18083¢ 1757¢0Q 181157
0422z 1668¢8 16414 172174 167138 172609
03$SS 157361 154655 162172 157274 162913
037717 146962 144378 152939 147017 152646
03555 135835 133351 140295 135726 141402
03333 124117 1217¢4 129053 123684 128928
03111 111928 166764 1175Se 111736 117288
02688 0595173 097631 102326 06s510 104491
02¢¢€6. | 087183 085485 092874 086025 089834
02444 0749¢6 0135¢6 078062 €71576G9 081117
0222z | 063214 061926 065551 0618170 064422
0158$ 0515136 050403 057151 052053 055122
01722 039737 039301 0387217 035070 042943
01480 026649 029607 033067 02€164 0285¢7
01270 022085 021952 022816 022300 024686
01087 01€2¢€5 016171 014982 012474 0164717
00928 0118¢3 011863 014978 011332 011714
00790 008715 008671 008086 00€553 009200
00€70 0063137 0063¢C2 004866 ao¢c10 006634
00566 | 004510 004551 006336 00442€ 004565
00475 003183 003253 003469 003071 003123
003G¢ | 002250 0022¢8 000324 002187 002028
00327 | ¢015717 001575 001338 001460 001242
€0267 [ 001074 1001058 002293 001056 000790
00z1¢ 000701 0006&SS 001278 0006CS 000633
col70 000436 000448 000155 000582 0005175
00121 000258 10002€5 000164 000484 000406
000$7 | €0Cl46 !000L1E€Q 000651 cocole 000072
000617 00007S 000112 000843 -000280 -000305
00041 000040 000064 000503 —000419 ~000526
6GC19 { 000016 000029 coooss ~000325 -000435




Newton Algorithm Convergence Summary

TABLE 5

Revised 2DPNS Algorithm

Maximum Residual {au}gi}
Semi-Implicit {Q}”
e T A | EnR
1 -1.2(-2) | -1.2(-2) | -1.2(-2) | -1.2(-2)
2 -8.0(-5) 2.2(-5) | -8.2(-5) 9.4(-5)
3 -5.0(-5) 3.2(-5) | -3.3(-5) | -4.0(-5)
4 3.6(-5) 3.4(-5) 5.0(-5) | -2.8(-6)
5 4.1(-5) 2.2(-5) 4.1(-5)
6 2.6(-5) 7.5(-6) 2.0(-5)
7 1.4(-5) 8.7(-6)
8 -1.1(-5)
9 ~-1.3(-5)
@s,; = —%;1[{QI}§+1_- {Ql}j] - 4, (e}, (66)

is the standard procedure in CMC:3DPNS. With this simplification, the
parameter "a" in equations 62 and 63 is zero. As a consequence, [J¢U]
vanishes identically and [JPU] can be included without destabilization.
Using {S¢} averaging, the accuracy of this algorithm form is nominally
unchanged, see column 6 in Table 4. The resultant Mewton Jacobian is
exact and these results are a very modest improvement in monotonicity

of convergence, see column 4 of Table 5. This convergence character is
the closest to the original algorithm, recall column 4, Table 3. Of more
significance, insertion of {S¢} averaging into the original algorithm
construction significantly improves convergence, see column 5 of Table 5.
This operation yields the PNS algorithm as efficient as the direct 2DBL

solution, recall column 3 of Table 3.
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SUMMARY AND CONCLUSIONS

A genera]ized coordinates form of the penalty finite element algorithm for
the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows
has been derived. This algorithm formulation requires only three distinct hyper-
matrices in its formulation and is applicable using any boundary fitted coordi-
nate transformation procedure. The tensor matrix product approximation to the
Jacobian of the Newton linear algebra matrix statement has been derived. The
Newton algorithm“has been restructured to replace the large sparse matrix solution
procedure with a grid sweeping procedure using a-block tridiagonal matrices where
o equals the number of dependent variables. '

The principal purpose of the reformulation is to improve solution economy.
With the restructured Jacobian,solution economy is linearly dependent on the
.convergence (rate) of the Newton algorithm. A series of numerical experiments
weré performed to evaluate convergence as a function of Jacobian completeness and
'off-diagonal coupling. The results of these studies indicate that the favorable
Newton quadratic convergence rate is maintained to a residual level of order 10'4.
Thereafter the convergence rate uniformly decreases to linear for residual compu-
tations in the range 1074 - 107°. Several modifications to the implicitness of
the algorithm Jacobian and to the overall linear algebra statement were made and
evaluated. Comparison to exact solutions indicates adequate accuracy is attain-
able for each of the modifications.

The results of this study provide required guidance on the appropriate form
for the tensor product 3DPNS algorithm. The original form of the algorithm,
employing a diagonal Jacobian, retarded evaluation of the Poisson equation
solutions, in particular the ¢ solution, and {S¢} averaging for the penalty term
yields the best Newton convergence performance and solution accuracy for the
test case. The considerable effort in constructing and coding the off-diagonal
Jacobian entries appears unrewarded, based upon these data, especially
considering the added solution costs associated with a block versus scalar tri-
diagonal matrix. This indication gains considerable importance in the progres-
sion to turbulent and/or three-dimensional flows, wherein the Reynolds stress
tensor will almost double the block size. Based on these data, it appears that
the 3DPNS tensor product algorithm should employ a nominally diagonal tensor
product Jacobian approximation for the initial-value variables, and should
retard the Poisson equation solutions, which in themselves can use a scalar
diagonal tensor product Jacobian approximation. The computation of Reynolds
stresses would also employ a scalar diagonal form when using an algebraic model.
This reconstruction of the 3DPNS algorithm would fit directly into the present
CMC:3DPNS code. It is suggested that this should indeed by the next step.
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Finite Element Algorithm Standard Hypermatrices

APPENDIX

One-Dimensional Finite Element Domains RS, k=1:

[A3000]

[A3001]

[A3010]

[A200]

[A201]

[A211]

un

1 fl !
2 1211

-
1 -1
-1 1

[A3100]

[A3011]

[A3110]

i

N
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k =1:

2
e’

Two-Dimensional Quadrilateral Domain R

2.

-6 -2 -1 -3

-2 -2 -1 -1

-1 -1 -2 -2
-3 -1 -2 -6
-2 -2 -1 -1

-2 -6 -3 -1

-1 -3 -6 -2
-1 -1 -2 -2
1

[B200] =

o

[B3020] =

-6 ~3 -1 -2

-3 -6 -2 -1

-1 -2 -2 -1

-2 -1 -1 =2

O

[B3010] = -

-2 -1 -1 -2
-1 -2 -2 -1
i -1 -2 -6 -3

1

i =2 -1 -3 -6
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