260 research outputs found

    Dynamic Control of Photoresponse in ZnO-Based Thin-Film Transistors in the Visible Spectrum

    Get PDF
    Cataloged from PDF version of article.We present ZnO-channel thin-film transistors with actively tunable photocurrent in the visible spectrum, although ZnO band edge is in the ultraviolet. ZnO channel is deposited by atomic layer deposition technique at a low temperature (80 C), which is known to introduce deep level traps within the forbidden band of ZnO. The gate bias dynamically modifies the occupancy probability of these trap states by controlling the depletion region in the ZnO channel. Unoccupied trap states enable the absorption of the photons with lower energies than the bandgap of ZnO. Photoresponse to visible light is controlled by the applied voltage bias at the gate terminal

    Low temperature atomic layer deposited ZnO photo thin film transistors

    Get PDF
    Cataloged from PDF version of article.ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80°C; Ion/Ioff ratio is extracted as 7.8 × 109 and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80°C. ID-VGS characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias. © 2014 American Vacuum Society

    Na+/I- symporter and type 3 iodothyronine deiodinase gene expression in amniotic membrane and placenta and its relationship to maternal thyroid hormones

    Get PDF
    Placental type 3 iodothyronine deiodinase (D3) potentially protects the fetus from the elevated maternal thyroid hormones. Na+/I- symporter (NIS) is a plasma membrane glycoprotein, which mediates active iodide uptake. Our objectives were to establish the distribution of NIS and D3 gene expressions in the placenta and the amniotic membrane and to investigate the relationship between placental D3 and NIS gene expressions and maternal iodine, selenium, and thyroid hormone status. Thyroid hormones, urinary iodine concentration (UIC), and selenium levels were measured in 49 healthy term pregnant women. NIS and D3 gene expressions were studied with the total mRNA RT-PCR method in tissues from maternal placenta (n = 49), fetal placenta (n = 9), and amniotic membrane (n = 9). NIS and D3 gene expressions were shown in the fetal and maternal sides of the placenta and amniotic membrane. Mean blood selenium level was 66 ± 26.5 μg/l, and median UIC was 143 μg/l. We could not demonstrate any statistically significant relationship of spot UIC and blood selenium with NIS and D3 expression (p > 0.05). Positive correlations were found between NIS and thyroxine-binding globulin (TBG) (r = 0.3, p = 0.042) and between D3 and preoperative glucose levels (r = 0.4, p = 0.006). D3 and NIS genes are expressed in term placenta and amniotic membrane; thus, in addition to placenta, amniotic membrane contributes to regulation of maternofetal iodine and thyroid hormone transmission. Further studies are needed to clarify the relationship between maternal glucose levels and placental D3 expression and between TBG and placental NIS expression. © 2013 Springer Science+Business Media New York

    Serum procalcitonin and CRP levels in non-alcoholic fatty liver disease: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both C reactive protein (CRP) and procalcitonin (PCT) are well known acute phase reactant proteins. CRP was reported to increase in metabolic syndrome and type-2 diabetes. Similarly altered level of serum PCT was found in chronic liver diseases and cirrhosis. The liver is considered the main source of CRP and a source of PCT, however, the serum PCT and CRP levels in non-alcoholic fatty liver disease (NAFLD) were not compared previously. Therefore we aimed to study the diagnostic and discriminative role of serum PCT and CRP in NAFLD.</p> <p>Methods</p> <p>Fifty NAFLD cases and 50 healthy controls were included to the study. Liver function tests were measured, body mass index was calculated, and insulin resistance was determined by using a homeostasis model assessment (HOMA-IR). Ultrasound evaluation was performed for each subject. Serum CRP was measured with nephalometric method. Serum PCT was measured with Kryptor based system.</p> <p>Results</p> <p>Serum PCT levels were similar in steatohepatitis (n 20) and simple steatosis (n 27) patients, and were not different than the control group (0.06 ± 0.01, 0.04 ± 0.01 versus 0.06 ± 0.01 ng/ml respectively). Serum CRP levels were significantly higher in simple steatosis, and steatohepatitis groups compared to healthy controls (7.5 ± 1.6 and 5.2 ± 2.5 versus 2.9 ± 0.5 mg/dl respectively p < 0.01). CRP could not differentiate steatohepatitis from simple steatosis. Beside, three patients with focal fatty liver disease had normal serum CRP levels.</p> <p>Conclusion</p> <p>Serum PCT was within normal ranges in patients with simple steatosis or steatohepatitis and has no diagnostic value. Serum CRP level was increased in NAFLD compared to controls. CRP can be used as an additional marker for diagnosis of NAFLD but it has no value in discrimination of steatohepatitis from simple steatosis.</p

    Lack of significant association of an insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene with tropical calcific pancreatitis

    Get PDF
    BACKGROUND: The genetic basis of tropical calcific pancreatitis (TCP) is different and is explained by mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. However, mutated SPINK1 does not account for the disease in all the patients, neither does it explain the phenotypic heterogeneity between TCP and fibro-calculous pancreatic diabetes (FCPD). Recent studies suggest a crucial role for pancreatic renin-angiotensin system during chronic hypoxia in acute pancreatitis and for angiotensin converting enzyme (ACE) inhibitors in reducing pancreatic fibrosis in experimental models. We investigated the association of ACE gene insertion/deletion (I/D) polymorphism in TCP patients using a case-control approach. Since SPINK1 mutations are proposed a modifier role, we also investigated its interaction with the ACE gene variant. METHODS: We analyzed the I/D polymorphism in the ACE gene (g.11417_11704del287) in 171 subjects comprising 91 TCP and 80 FCPD patients and compared the allelic and genotypic frequency in them with 99 healthy ethnically matched control subjects. RESULTS: We found 46% and 21% of TCP patients, 56% and 19.6% of FCPD patients and 54.5% and 19.2% of the healthy controls carrying the I/D and D/D genotypes respectively (P>0.05). No significant difference in the clinical picture was observed between patients with and without the del allele at the ACE in/del polymorphism in both categories. No association was observed with the presence or absence of N34S SPINK1 mutation in these patients. CONCLUSION: We conclude that the ACE insertion/deletion variant does not show any significant association with the pathogenesis, fibrosis and progression of tropical calcific pancreatitis and the fibro-calculous pancreatic diabetes

    Quantitative trait locus analysis identifies Gabra3 as a regulator of behavioral despair in mice

    Get PDF
    The Tail Suspension Test (TST), which measures behavioral despair, is widely used as an animal model of human depressive disorders and antidepressant efficacy. In order to identify novel genes involved in the regulation of TST performance, we crossed an inbred strain exhibiting low immobility in the TST (RIIIS/J) with two high-immobility strains (C57BL/6J and NZB/BlNJ) to create two distinct F2 hybrid populations. All F2 offspring (n = 655) were genotyped at high density with a panel of SNP markers. Whole-genome interval mapping of the F2 populations identified statistically significant quantitative trait loci (QTLs) on mouse chromosomes (MMU) 4, 6, and X. Microarray analysis of hippocampal gene expression in the three parental strains was used to identify potential candidate genes within the MMUX QTLs identified in the NZB/BlNJ × RIIIS/J cross. Expression of Gabra3, which encodes the GABAA receptor α3 subunit, was robust in the hippocampus of B6 and RIIIS mice but absent from NZB hippocampal tissue. To verify the role of Gabra3 in regulating TST behavior in vivo, mice were treated with SB-205384, a positive modulator of the α3 subunit. SB-205384 significantly reduced TST immobility in B6 mice without affecting general activity, but it had no effect on behavior in NZB mice. This work suggests that GABRA3 regulates a behavioral endophenotype of depression and establishes this gene as a viable new target for the study and treatment of human depression

    Variation within the Huntington's Disease Gene Influences Normal Brain Structure

    Get PDF
    Genetics of the variability of normal and diseased brain structure largely remains to be elucidated. Expansions of certain trinucleotide repeats cause neurodegenerative disorders of which Huntington's disease constitutes the most common example. Here, we test the hypothesis that variation within the IT15 gene on chromosome 4, whose expansion causes Huntington's disease, influences normal human brain structure. In 278 normal subjects, we determined CAG repeat length within the IT15 gene on chromosome 4 and analyzed high-resolution T1-weighted magnetic resonance images by the use of voxel-based morphometry. We found an increase of GM with increasing long CAG repeat and its interaction with age within the pallidum, which is involved in Huntington's disease. Our study demonstrates that a certain trinucleotide repeat influences normal brain structure in humans. This result may have important implications for the understanding of both the healthy and diseased brain

    The Faces in Infant-Perspective Scenes Change over the First Year of Life

    Get PDF
    Mature face perception has its origins in the face experiences of infants. However, little is known about the basic statistics of faces in early visual environments. We used head cameras to capture and analyze over 72,000 infant-perspective scenes from 22 infants aged 1-11 months as they engaged in daily activities. The frequency of faces in these scenes declined markedly with age: for the youngest infants, faces were present 15 minutes in every waking hour but only 5 minutes for the oldest infants. In general, the available faces were well characterized by three properties: (1) they belonged to relatively few individuals; (2) they were close and visually large; and (3) they presented views showing both eyes. These three properties most strongly characterized the face corpora of our youngest infants and constitute environmental constraints on the early development of the visual system

    Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder

    Get PDF
    Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n similar to 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders
    corecore