362 research outputs found
Do correlations create an energy gap in electronic bilayers? Critical analysis of different approaches
This paper investigates the effect of correlations in electronic bilayers on
the longitudinal collective mode structure. We employ the dielectric
permeability constructed by means of the classical theory of moments. It is
shown that the neglection of damping processes overestimates the role of
correlations. We conclude that the correct account of damping processes leads
to an absence of an energy gap.Comment: 4 page
Aeorodynamic characteristics of an air-exchanger system for the 40- by 80-foot wind tunnel at Ames Research Center
A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented
Nonlinear relaxation field in charged systems under high electric fields
The influence of an external electric field on the current in charged systems
is investigated. The results from the classical hierarchy of density matrices
are compared with the results from the quantum kinetic theory. The kinetic
theory yields a systematic treatment of the nonlinear current beyond linear
response. To this end the dynamically screened and field-dependent
Lenard-Balescu equation is integrated analytically and the nonlinear relaxation
field is calculated. The classical linear response result known as Debye -
Onsager relaxation effect is only obtained if asymmetric screening is assumed.
Considering the kinetic equation of one specie the other species have to be
screened dynamically while the screening with the same specie itself has to be
performed statically. Different other approximations are discussed and
compared.Comment: language correction
Equation of state of a strongly magnetized hydrogen plasma
The influence of a constant uniform magnetic field on the thermodynamic
properties of a partially ionized hydrogen plasma is studied. Using the method
of Green' s function various interaction contributions to the thermodynamic
functions are calculated. The equation of state of a quantum magnetized plasma
is presented within the framework of a low density expansion up to the order
e^4 n^2 and, additionally, including ladder type contributions via the bound
states in the case of strong magnetic fields (2.35*10^{5} T << B << 2.35*10^{9}
T). We show that for high densities (n=10^{27-30} m^{-3}) and temperatures
T=10^5 - 10^6 K typical for the surface of neutron stars nonideality effects
as, e.g., Debye screening must be taken into account.Comment: 12 pages, 2 Postscript figures. uses revtex, to appear in Phys. Rev.
Dynamical Properties and Plasmon Dispersion of a Weakly Degenerate Correlated One-Component Plasma
Classical Molecular Dynamics (MD) simulations for a one-component plasma
(OCP) are presented. Quantum effects are included in the form of the Kelbg
potential. Results for the dynamical structure factor are compared with the
Vlasov and RPA (random phase approximation) theories. The influence of the
coupling parameter , degeneracy parameter and the form
of the pair interaction on the optical plasmon dispersion is investigated. An
improved analytical approximation for the dispersion of Langmuir waves is
presented.Comment: 23 pages, includes 7 ps/eps-figures and 2 table
Dielectric function of a two-component plasma including collisions
A multiple-moment approach to the dielectric function of a dense non-ideal
plasma is treated beyond RPA including collisions in Born approximation. The
results are compared with the perturbation expansion of the Kubo formula. Sum
rules as well as Ward identities are considered. The relations to optical
properties as well as to the dc electrical conductivity are pointed out.Comment: latex, 10 pages, 7 figures in ps forma
Hostile and Benevolent Sexism: The Differential Roles of Human Supremacy Beliefs, Women’s Connection to Nature, and the Dehumanization of Women
Scholars have long argued that sexism is partly rooted in dominance motives over animals and nature, with women being perceived as more animal-like and more closely connected to nature than men. Yet systematic research investigating these associations is currently lacking. Five studies (total N=2,409) consistently show that stronger beliefs in human supremacy over animals and nature were related to heightened hostile and benevolent sexism. Furthermore, perceiving women as more closely connected to nature than men was particularly associated with higher benevolent sexism, whereas subtle dehumanization of women was uniquely associated with higher hostile sexism. Blatant dehumanization predicted both types of sexism. Studies 3 and 4 highlight the roles of social dominance orientation and benevolent beliefs about nature underpinning these associations, while Study 5 demonstrates the implications for individuals’ acceptance of rape myths and policies restricting pregnant women’s freedom. Taken together, our findings reveal the psychological connections between gender relations and human-animal relations
Photoluminescence investigations of 2D hole Landau levels in p-type single Al_{x}Ga_{1-x}As/GaAs heterostructures
We study the energy structure of two-dimensional holes in p-type single
Al_{1-x}Ga_{x}As/GaAs heterojunctions under a perpendicular magnetic field.
Photoluminescence measurments with low densities of excitation power reveal
rich spectra containing both free and bound-carrier transitions. The
experimental results are compared with energies of valence-subband Landau
levels calculated using a new numerical procedure and a good agreement is
achieved. Additional lines observed in the energy range of free-carrier
recombinations are attributed to excitonic transitions. We also consider the
role of many-body effects in photoluminescence spectra.Comment: 13 pages, 10 figures, accepted to Physical Review
Condensed Matter Theory of Dipolar Quantum Gases
Recent experimental breakthroughs in trapping, cooling and controlling
ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the
way toward the investigation of highly tunable quantum systems, where
anisotropic, long-range dipolar interactions play a prominent role at the
many-body level. In this article we review recent theoretical studies
concerning the physics of such systems. Starting from a general discussion on
interaction design techniques and microscopic Hamiltonians, we provide a
summary of recent work focused on many-body properties of dipolar systems,
including: weakly interacting Bose gases, weakly interacting Fermi gases,
multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D
and quasi-1D geometries. Within each of these topics, purely dipolar effects
and connections with experimental realizations are emphasized.Comment: Review article; submitted 09/06/2011. 158 pages, 52 figures. This
document is the unedited author's version of a Submitted Work that was
subsequently accepted for publication in Chemical Reviews, copyright American
Chemical Society after peer review. To access the final edited and published
work, a link will be provided soo
- …